
  

NRC at i2b2: one challenge, three practical tasks, nine statistical systems, 
hundreds of clinical records, millions of useful features.  

Berry de Bruijn, Colin Cherry, Svetlana Kiritchenko, Joel Martin, Xiaodan Zhu 
Institute for Information Technology, National Research Council, Canada 

Abstract 

The team from National Research Council Canada, 
Institute for Information Technology, submitted 
systems for all three tasks within the 2010 I2B2 
challenge. Each of the systems is built around a 
(semi-) supervised machine learning paradigm where 
elements of the source texts are represented as bags-
of-features. The features were mostly derived from 
the text itself augmented with information from 
external sources: UMLS, cTAKES, and Medline. Our 
best scoring systems gave the following F-scores: 
task-1: 0.8523; task-2: 0.9362; task-3: 0.7313. We 
found that the greatest improvements for all three 
systems came from 'feature engineering' where 
external sources gave moderate improvements. 

Introduction 

The team from National Research Council Canada, 
Institute for Information Technology, submitted 
systems for each of the three tasks within the 
challenge. Given the differences between the three 
tasks, the approaches were quite different, although a 
number of characteristics are shared among the 
systems. 

Each of the systems is built around a (semi) 
supervised machine learning paradigm where 
elements of the source texts are represented as bags-
of-features. Patterns between features and desired 
('ground truth') output in the training texts are learned 
by the system and this allows it to generate output for 
observed feature patterns in test texts. We can group 
the dimensions in the feature space as follows: 
• surface features of that word (or token) 
• concept mapping features of words and terms 
• context features of that word 
• features for the sentence in which the word occurs 
• features for the section in which the word occurs 
• features for the entire document 

In most cases, the features are binary – i.e., either 
'present' or 'absent' – and represented in a sparse 
vector – i.e., only 'present' features are written out. 

Word surface features include: the word/token itself, 
whether it is a long/average/short word; whether it is 
all-uppercase, all-lowercase, or mixed-case; or all-
digits or a mix of digits and letters; whether it 

contains punctuation, or is punctuation-only. They 
also include character-four-grams and word stems. 

Concept mapping features are derived from existing 
annotation tools, namely cTAKES1, MetaMap2, and 
ConText3. Inspired by [4], we also use the Brown 
clustering algorithm5 to create 7-bit hierarchical word 
clusters from the provided unlabeled data. 
Additionally, a few pattern matching algorithms from 
our own libraries were applied to cluster words and 
terms into more general concepts. These include: 
matching for negation words, auxiliary verbs, words 
indicating possibility or uncertainty, family members, 
past tense verbs, as well as terms from a symptom 
list, reaction word list, and preposition word list.  

Context features include the token features of the 
neighbouring words with the window spanning up to 
4 tokens before to 4 tokens after the word, as well as 
word bi/tri/quad-grams and skip-n-grams. 

Sentence features include whether the sentence is 
long / average / short; upper/lower case letters were 
seen; digits were seen; sentence starts with an 
enumeration token; sentence ends with a colon; 
sentence contains possible / history / family / 
negation words; and whether verbs indicate past or 
future tense.  

Section features: the (assumed) section headings are 
identified as the most recently seen all-caps line 
ending with a colon; the sub-section headings (if 
present) are assumed to be the most recently seen 
mixed-case line ending with a colon. 

Document features include: upper-case / lower-case 
patterns seen across the document, and whether the 
document is long / average / short. 

Task 1 system: design and performance 

Task 1 concerns the identification of key concepts 
anywhere in the source text, and includes 
determining the exact boundaries of the concept, as 
well as the class of the concept ('problem', 'test', or 
'treatment'). Concepts are non-overlapping and non-
nested. 

In our system, concept tagging is carried out using a 
discriminative semi-Markov HMM, trained using 
passive-aggressive online updates. Semi-Markov 
models6 are Hidden Markov Models that tag multi-



  

token spans of text, as opposed to single tokens. This 
allows us to conduct information extraction without 
devising a Begin/Inside/Outside (BIO) tagging 
formalism; instead, we need only four tags: outside, 
problem, treatment, and test. Outside is constrained 
to tag only single words, while the others can tag 
spans up to 30 tokens in length. 

The semi-Markov model provides two major 
advantages over BIO. First, by labelling multi-token 
spans, labels cohere naturally. This allows the tagger 
to perform well without tracking the transitions 
between labels. Second, semi-Markov models allow 
much greater flexibility in feature construction, as 
one has access to the entire text of the concept as it is 
tagged, allowing easy inclusion of features such as 
concept length.  

Semi-Markov models are generally trained as CRFs. 
However, we found CRF training to be too slow and 
memory intensive for our large feature sets. Instead, 
we train using an online algorithm similar to Collins’ 
structured perceptron7, called the Passive-Aggressive 
(PA) algorithm8. In particular, we use a loss-driven 
variant with a 0-1 cost. PA learning makes several 
passes through the training set. In each pass, each 
training example is visited once and decoded to find 
the max-loss response. The weight vector is then 
adjusted with the smallest possible update that will 
separate the correct tagging from the max-loss 
response by a margin of 1. During development, PA 
consistently outperformed a structured perceptron. 

Table 1.1 shows the contributions of various feature 
groups, as measured by performance on a held-out 
development set drawn from all four hospitals, 
containing 3.1K sentences. We begin with a standard 
part-of-speech tagging feature set in (a), as described 
by [9]. This is augmented to indicate which features 
come from the first or last token in a concept, which 
is necessary for good boundary accuracy. In (b), we 
add word generalization features derived from lower-
casing, word shape (the token “Chem-7” becomes 
“Aa-0”), and the 7-bit Brown clusters. We then add 
task-specific data in (c), in the form of section-
heading features and features derived from the 
MetaMap and cTAKES taggers.  

Up until this point, no features have required semi-
Markov, multi-token functionality. We explore these 

features next in (d). Unfortunately, straightforward 
semi-Markov features, such as concept length, were 
not helpful. However, we found the following to be 
useful: 

Bracket matching: indicates if a concept has 
mismatching round brackets 

Concept sequence: using simplified MetaMap labels 
(designed to match the task concepts) and cTAKES 
chunk labels, we generate features indicating the 
sequence of labels completely contained within a 
proposed concept, so that “trace edema at ankles” 
becomes “umls_problem umls_body_part”. This 
allows the system to learn, for example, that a body-
part alone is unlikely to be a problem, but a concept 
containing a problem indicator followed by a body 
part is probably a problem. 

Preposition counting: for concepts with three or 
more words, we include a feature that counts the 
number of prepositions in the concept. This is 
designed to capture the annotation standard, which 
encourages at most one preposition. 

Function word sequence: similar to the concept 
sequence feature, we also include a function word 
sequence, which allows us to generalize a concept to 
patterns such as “the * with the *”. 

Finally, in (e) we add transition features in the form 
of tag bigrams and trigrams, such as “test outside 
problem”. These were initially harmful; however, if 
we augment outside tags for common words with 
their lexical items, we can create meaningful tag n-
grams, such as “test out_for problem”, which are 
helpful. 

Since the PA algorithm has no explicit regularization, 
it is helpful to average the parameters values over all 
updates7. We report results using this averaged 
weight vector. We used cross-validation to determine 
that 15 passes through the training data was sufficient 
for good performance. The complete system, which 
includes all of the features described above, trains in 
about 1.5 hours on modern hardware, and assigns 
1.1M features non-zero weights. The effective feature 
space explored contains 4.2M features. We did not 
find over-fitting to be an issue. 

For the official test runs, we selected three system 
variations: (1) the complete system; (2) a system that 
did not use UMLS or cTAKES features; (3) a system 
that included self-training on unlabelled data10. Table 
1.2 summarizes performance on the test set.  

The results demonstrate that the external sources of 
semantic and syntactic tagging (UMLS and 
cTAKES) are beneficial; together they improve F-
measure by 1.5 percentage points. Unfortunately, 

Feature Set Rec Prec F 
(a) Standard part-of-speech .793 .832 .812 
(b) + lowercase, shape, clusters .807 .840 .823 
(c) + headers, external taggers .818 .848 .833 
(d) + semi-Markov features .826 .858 .842 
(e) + tag trigrams w/ annotation .829 .859 .844 
Table 1.1: Concept tagging feature contributions. 

 



  

bootstrapping on the unlabelled data (System 3) 
showed no improvement. 

 True 
Pos  

False 
Neg 

False 
Pos 

Recall Prec F-
score 

Exact        
Sys-1 37646 7363 5683 .8364 .8688 .8523 
Sys-2 36776 8233 6125 .8170 .8572 .8366 
Sys-3 37663 7346 5787 .8367 .8668 .8515 
Inexact      
Sys-1 41339 3670 1990 .9167 .9322 .9244 
Sys-2 40783 4226 2118 .9037 .9246 .9140 
Sys-3 41421 3588 2029 .9184 .9305 .9244 

Table 1.2: Test set performance for the three systems 
– for exact and inexact spans. 

Task 2 system: design and performance 

This task is phrased as follows: for every 'problem' 
concept in a text, assert whether that concept was 
found to be present, absent, possible, conditional, 
hypothetical, or associated with someone else.  

We solve this task in two stages. In stage 1, we 
generate assertion class predictions for every word 
that is part of a 'problem' concept. In stage 2, a 
secondary classifier predicts a class for the complete 
concept based on the (various) per-word predictions. 

In stage 1, each word is represented as a large, sparse, 
binary feature vector, as described in the 
Introduction. Three classifiers are trained and applied 
independently: (1) the SVM-multiclass from the 
SVM-light/SVM-struct library11, which outputs one 
score per class per word; (2) LibSVM12, where six 
classifiers are trained and applied in a one-vs-rest set-
up, resulting in one score per class per word; and (3) 
an in-house multiclass passive-aggressive learner (see 
Task-1), outputting one score per class per concept. 
The stage 2 classifier used SVM-multiclass with a 
linear kernel, default parameter settings and a C-
parameter value of 20,000, as selected using a 
development set. 

Feature Set F 
(a) Words, word n-grams, character n-grams .899 
(b) + token/ sentence/ section/ doc features .924 
(c) + taggers: MetaMap / cTAKES / ConText .937 
(d) + all features from neighbouring words .944 
Table 2.1: Assertion task feature contributions. 

The features used in stage 1 were virtually all 
features mentioned in the Introduction. All groups of 
features benefited performance: table 2.1 summarizes 
how different groups of features contributed to the F-
score when sequentially inserted, as tested on one 
hold-out set.  

Given this general architecture, we produced three 
variants for our official submission: 

• System 1: the complete two-stage process, as 
described above. 

• System 2: a simplified system. Stage 1 consisted of 
SVM-multiclass alone predicting word-level classes. 
Stage 2 remained unchanged. 

• System 3: designed to improve minority class 
recall, even if it comes at the expense of reduced 
overall performance. The output of System 1 was 
overruled when the LibSVM score on 'associated-
with-someone-else'-vs-rest exceeded a hand-set 
threshold for any of the words in a concept. The same 
was then done for 'hypothetical', 'conditional', and 
'possible' – mimicking the order specified in the 
challenge guidelines. If none of the scores overruled 
System-1 output, the original output was retained. 

 True 
Pos  

False 
Neg 

False 
Pos 

Recall Prec F-
score 

Sys-1 17366 1184 1184 .9362 .9362 .9362 
Sys-2 17338 1212 1212 .9347 .9347 .9347 
Sys-3 17197 1353 1353 .9271 .9271 .9271 

Table 2.2: Test set performance for the three 
systems. 

System 1 achieved 93.62% accuracy. Table 2.3 
shows the class-by-class confusion matrix between 
prediction and truth. The matrix shows that despite 
efforts to balance type-1 errors and type-2 errors, the 
classifier still tends to favour the majority class. 
Fishing out the 'conditional' cases was troublesome, 
with a recall only slightly above 15%. Also, the 
mislabelling of true 'possible' cases as 'present' 
accounted for 33% of our system’s mistakes. 

System 2, while being much simpler in design, gave 
by and large comparable results: an accuracy of 
0.9347 and a similar contingency table (not shown). 
Most errors were caused by a yet stronger preference 
to label cases as 'present', the majority class. The 
higher System-1 score indicates that there is still 
some independency between its classifiers. 

System 3 performed as expected: it increased recall 
(reflected by higher numbers on the diagonal of 
Table 2.4) for all the minority classes – including, in 
fact, 'absent' – even as precision dropped enough to 
lower micro-averaged accuracy to 0.9271. Average 
F-score, when calculated per class and then macro-
averaged, is .774 for System 3, up from .753 for 
System 1 and .740 for System 2. 
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absent 3370 20 6 13 14 121 
AWSE 3 105  1  1 
cond   26   1 
hypoth. 4   617 10 48 
possib 14  1 15 468 74 
present 218 20 138 71 391 12780 

Table 2.3: System 1 performance confusion matrix; 
concept counts for class predictions (rows) and truths 
(columns). AWSE=associated-with-someone-else 
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absent 3409 9 5 12 21 273 
AWSE 4 124  1  2 
cond 1  44 2  30 
hypoth. 4   621 11 53 
possib 20   12 491 159 
present 171 12 122 69 360 12508 

Table 2.4: System 3 performance confusion matrix 

Task 3 system: design and performance 

The goal of task 3 is to determine the relationship 
between a pair of concepts provided that the two 
concepts appear in the same sentence and one (or 
both) of them is a 'problem' concept. Task 3 defines 
five categories of treatment-problem relations, two 
categories of test-problem relations, and one category 
of problem-problem relation.  

We trained three separate classifiers to categorize 
treatment-problem, test-problem, and problem-
problem relations respectively. The classification 
framework was maximum entropy (ME), and we 
used an OpenNLP ME toolkit13. Relations were 
classified independently; i.e., a decision made on one 
concept pair does not affect other decisions. 

Our baseline feature set is similar to that of [14], 
which was further augmented with features derived 
directly from the concepts and assertion-tagged text 
and from the external MetaMap and cTAKES 
taggers, as described in the Introduction. For the 
convenience of later discussion, we call all these 
features augmented-baseline features. Note that the 
specific feature sets used by the three classifiers were 
different from each other, which were decided during 
development.  

In addition, we found the following features and 
design decisions to be beneficial.  

a) Exploiting parsing trees. We parsed the input texts 
using the Charniak parser with its improved, self-
trained biomedical parsing model15. These were then 
transferred into Stanford dependencies16. Features 
extracted included words, their tags (e.g., POS tags), 
and arc labels on the dependency path between the 
minimal trees that cover the two concepts, along with 
the word and tags of their common ancestor, and the 
minimal, average and maximal tree distances to the 
common ancestor. We observed an additional 0.4 
point gain in F-score on 5-fold cross validation on the 
training set. 

b) Balancing category distribution. In the training 
set, some of the relationship types were observed 
much more often than others – e.g., there were about 
8-times more negative problem-problem relations 
than positive ones. We addressed this issue by down-
sampling the training set to a pos/neg ratio between 
1:2 and 1:4, as selected using a development set. This 
reduced a classifier's bias towards the majority class, 
and improved the overall F-score by about 0.3 point 
on 5-fold cross validation. This was especially 
important when a system included unsupervised 
bootstrapping (as our System 3 did), since bias is 
amplified when bootstrapping is applied. 

c) Using semantics features. We used Medline as a 
semi-structured source of knowledge, calculating 
Pointwise Mutual Information (PMI) between two 
concepts as found in Medline abstracts to 
approximate the relatedness of these concepts. This 
weak approximation to structured knowledge of 
concept relationships still yielded about 0.2 point 
improvement during development. 

d) Semi-supervised training. We also applied 
bootstrapping on the provided unlabeled data. For 
this, our system for Task-1 was applied to the 
unlabeled documents to provide concept span tags 
and labels. This bootstrapping gave us about 0.4 
point improvement. As we attempted self-training for 
all three tasks, it is interesting that it was successful 
only for Task 3. We suspect that this may be because 
Task 3 had the smallest amount of training data. 

We submitted three system variants for Task 3. 
System 1 used the augmented-baseline features 
discussed above as well as the dependency features. 
System 2 additionally employed the PMI statistics 
from Medline collocations, and System 3 included 
bootstrapping on the provided unlabeled documents. 

Table 3.1 shows the performance of each system 
variant on the final test set. The system improved its 
exact F-score with each version, with Medline PMI 
providing a 0.3 gain, and self-training providing an 
additional 0.4 gain.  



  

 True 
Pos  

False 
Neg 

False 
Pos 

Recall Prec- F-
score 

Exact         
Sys-1 6296 2809 1965 .6902 .7611 .7239 
Sys-2 6269 2801 1896 .6911 .7677 .7274 
Sys-3 6288 2782 1838 .6932 .7738 .7313 
Clustered       
Sys-1 6704 2366 1522 .7391 .8149 .7752 
Sys-2 6678 2392 1487 .7362 .8178 .7749 
Sys-3 6641 2429 1485 .7321 .8172 .7723 

Table 3.1: Test set performance for the three systems 
for exact class matches and clustered-class matches. 

Conclusions 

The team from NRC-IIT posted sound results for 
each of the three tasks in the 2010 i2b2 challenge. 
Our best scoring systems, built from supervised and 
semi-supervised statistical machine learning 
components, gave an F-score of 0.8523 on task 1, 
0.9362 on task 2, and 0.7313 on task 3. Our choices 
in machine learning algorithms allowed us to expand 
the feature space without risking overfitting. A wide 
range of textual features gave more significant 
improvements while the gains from the knowledge-
rich resources we applied -- MetaMap, cTAKES, and 
MedLine – seemed moderate.  
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