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Abstract

Negation words, such asno andnot, play
a fundamental role in modifying sentiment
of textual expressions. We will refer to a
negation word as thenegatorand the text
span within the scope of the negator as the
argument. Commonly used heuristics to
estimate the sentiment of negated expres-
sions rely simply on the sentiment of ar-
gument (and not on the negator or the ar-
gument itself). We use a sentiment tree-
bank to show that these existing heuristics
are poor estimators of sentiment. We then
modify these heuristics to be dependent on
the negators and show that this improves
prediction. Next, we evaluate a recently
proposed composition model (Socher et
al., 2013) that relies on both the negator
and the argument. This model learns the
syntax and semantics of the negator’s ar-
gument with a recursive neural network.
We show that this approach performs bet-
ter than those mentioned above. Finally,
we explicitly incorporate the prior senti-
ment of the argument and observe that this
information can help further reduce fitting
errors.

1 Introduction

Morante and Sporleder (2012) define negation to
be “a grammatical category that allows the chang-
ing of the truth value of a proposition”. Nega-
tion is often expressed through the use of nega-
tive signals or negators–words likeisn’t andnever,
and it can significantly affect the sentiment of
its scope. Understanding the impact of negation
on sentiment is essential in automatic analysis of
sentiment. The literature contains interesting re-
search attempting to model and understand the
behavior (reviewed in Section 2). For example,

Figure 1: Effect of a list of common negators
in modifying sentiment values in Stanford Senti-
ment Treebank. The x-axis iss(~w), and y-axis
is s(wn, ~w). Each dot in the figure corresponds
to a text span being modified by (composed with)
a negator in the treebank. The red diagonal line
corresponds to the sentiment-reversing hypothesis
that simply reverses the sign of sentiment values.

a simple yet influential hypothesis posits that a
negator reverses the sign of the sentiment value
of the modified text (Polanyi and Zaenen, 2004;
Kennedy and Inkpen, 2006). Theshiftinghypoth-
esis (Taboada et al., 2011), however, assumes that
negators change sentiment values by a constant
amount. In this paper, we refer to a negation word
as thenegator(e.g.,isn’t), a text span being mod-
ified by and composed with a negator as thear-
gument(e.g.,very good), and entire phrase (e.g.,
isn’t very good) as thenegated phrase.

The recently available Stanford Sentiment Tree-
bank (Socher et al., 2013) renders manually anno-
tated, real-valued sentiment scores for all phrases
in parse trees. This corpus provides us with the
data to further understand the quantitative behav-
ior of negators, as the effect of negators can now
be studied withargumentsof rich syntactic and se-
mantic variety. Figure 1 illustrates the effect of a
common list of negators on sentiment as observed



on the Stanford Sentiment Treebank.1 Each dot in
the figure corresponds to anegated phrasein the
treebank. The x-axis is the sentiment score of its
arguments(~w) and y-axis the sentiment score of
the entire negated phrases(wn, ~w).

We can see that thereversingassumption (the
red diagonal line) does capture some regularity of
human perception, but rather roughly. Moreover,
the figure shows that same or similars(~w) scores
(x-axis) can correspond to very differents(wn, ~w)
scores (y-axis), which, to some degree, suggests
the potentially complicated behavior of negators.2

This paper describes a quantitative study of
the effect of a list of frequent negators on sen-
timent. We regard the negators’ behavior as an
underlying function embedded in annotated data;
we aim to model this function from different as-
pects. By examining sentiment compositions of
negators and arguments, we model the quantita-
tive behavior of negators in changing sentiment.
That is, given a negated phrase (e.g.,isn’t very
good) and the sentiment score of its argument
(e.g., s(“very good′′) = 0.5), we focus on un-
derstanding the negator’s quantitative behavior in
yielding the sentiment score of the negated phrase
s(“not very good′′).

We first evaluate the modeling capabilities of
two influential heuristics and show that they cap-
ture only very limited regularity of negators’ ef-
fect. We then extend the models to be dependent
on the negators and demonstrate that such a sim-
ple extension can significantly improve the per-
formance of fitting to the human annotated data.
Next, we evaluate a recently proposed composi-
tion model (Socher, 2013) that relies on both the
negator and the argument. This model learns the
syntax and semantics of the negator’s argument
with a recursive neural network. We show that this
approach performs better than those mentioned
above. Finally, we explicitly incorporate the prior
sentiment of the argument and observe that this in-
formation can help further reduce fitting errors.

1The sentiment values have been linearly rescaled from
the original range [0, 1] to [-0.5, 0.5]; in the figure a negative
or positive value corresponds to a negative or a positive sen-
timent respectively; zero means neutral. The negator list will
be discussed later in the paper.

2Similar distribution is observed in other data such as
Tweets (Kiritchenko et al., 2014).

2 Related work

Automatic sentiment analysis The expression of
sentiment is an integral component of human lan-
guage. In written text, sentiment is conveyed with
word senses and their composition, and in speech
also via prosody such as pitch (Mairesse et al.,
2012). Early work on automatic sentiment anal-
ysis includes the widely cited work of (Hatzivas-
siloglou and McKeown, 1997; Pang et al., 2002;
Turney, 2002), among others. Since then, there has
been an explosion of research addressing various
aspects of the problem, including detecting sub-
jectivity, rating and classifying sentiment, label-
ing sentiment-related semantic roles (e.g., target
of sentiment), and visualizing sentiment (see sur-
veys by Pang and Lee (2008) and Liu and Zhang
(2012)).
Negation modeling Negation is a general gram-
matical category pertaining to the changing of the
truth values of propositions; negation modeling is
not limited to sentiment. For example, paraphrase
and contradiction detection systems rely on detect-
ing negated expressions and opposites (Harabagiu
et al., 2006). In general, a negated expression and
the opposite of the expression may or may not con-
vey the same meaning. For example,not alivehas
the same meaning asdead, however,not tall does
not always meanshort. Some automatic methods
to detect opposites were proposed by Hatzivas-
siloglou and McKeown (1997) and Mohammad et
al. (2013).
Negation modeling for sentiment An early yet
influentialreversingassumption conjectures that a
negator reverses the sign of the sentiment value
of the modified text (Polanyi and Zaenen, 2004;
Kennedy and Inkpen, 2006), e.g., from +0.5 to -
0.5, or vice versa. A different hypothesis, called
theshifting hypothesis in this paper, assumes that
negators change the sentiment values by a con-
stant amount (Taboada et al., 2011; Liu and Sen-
eff, 2009). Other approaches to negation modeling
have been discussed in (Jia et al., 2009; Wiegand
et al., 2010; Lapponi et al., 2012; Benamara et al.,
2012).

In the process of semantic composition, the ef-
fect of negators could depend on the syntax and
semantics of the text spans they modify. The ap-
proaches of modeling this include bag-of-word-
based models. For example, in the work of
(Kennedy and Inkpen, 2006), a featurenot good
will be created if the wordgood is encountered



within a predefined range after a negator.
There exist different ways of incorporating

more complicated syntactic and semantic infor-
mation. Much recent work considers sentiment
analysis from a semantic-composition perspec-
tive (Moilanen and Pulman, 2007; Choi and
Cardie, 2008; Socher et al., 2012; Socher et al.,
2013), which achieved the state-of-the-art perfor-
mance. Moilanen and Pulman (2007) used a col-
lection of hand-written compositional rules to as-
sign sentiment values to different granularities of
text spans. Choi and Cardie (2008) proposed a
learning-based framework. The more recent work
of (Socher et al., 2012; Socher et al., 2013) pro-
posed models based on recursive neural networks
that do not rely on any heuristic rules. Such mod-
els work in a bottom-up fashion over the parse
tree of a sentence to infer the sentiment label of
the sentence as a composition of the sentiment ex-
pressed by its constituting parts. The approach
leverages a principled method, the forward and
backward propagation, to learn a vector represen-
tation to optimize the system performance. In
principle neural network is able to fit very compli-
cated functions (Mitchell, 1997), and in this paper,
we adapt the state-of-the-art approach described in
(Socher et al., 2013) to help understand the behav-
ior of negators specifically.

3 Negation models based on heuristics

We begin with previously proposed methods that
leverage heuristics to model the behavior of nega-
tors. We then propose to extend them to consider
lexical information of the negators themselves.

3.1 Non-lexicalized assumptions and
modeling

In previous research, some influential, widely
adopted assumptions posit the effect of negators
to be independent of both the specific negators and
the semantics and syntax of the arguments. In this
paper, we call a model based on such assumptions
a non-lexicalized model. In general, we can sim-
ply define this category of models in Equation 1.
That is, the model parameters are only based on
the sentiment value of the arguments.

s(wn, ~w)
def
= f(s(~w)) (1)

3.1.1 Reversing hypothesis

A typical model falling into this category is the
reversinghypothesis discussed in Section 2, where

a negator simply reverses the sentiment scores(~w)
to be−s(~w); i.e.,f(s(~w)) = −s(~w).

3.1.2 Shifting hypothesis

Basic shiftingSimilarly, a shifting based model
depends ons(~w) only, which can be written as:

f(s(~w)) = s(~w)− sign(s(~w)) ∗ C (2)

where sign(.) is the standardsign function
which determines if the constantC should be
added to or deducted froms(wn): the constant is
added to a negatives(~w) but deducted from a pos-
itive one.

Polarity-based shiftingAs will be shown in our
experiments, negators can have different shifting
power when modifying a positive or a negative
phrase. Thus, we explore the use of two different
constants for these two situations, i.e.,f(s(~w)) =
s(~w)−sign(s(~w))∗C(sign(s(~w))). The constant
C now can take one of two possible values. We
will show that this simple modification improves
the fitting performance statistically significantly.
Note also that instead of determining these con-
stants by human intuition, we use the training data
to find the constants in all shifting-based models
as well as for the parameters in other models.

3.2 Simple lexicalized assumptions

The above negation hypotheses rely ons(~w). As
intuitively shown in Figure 1, the capability of the
non-lexicalized heuristics might be limited. Fur-
ther semantic or syntactic information from either
the negators or the phrases they modify could be
helpful. The most straightforward way of expand-
ing the non-lexicalized heuristics is probably to
make the models to be dependent on the negators.

s(wn, ~w)
def
= f(wn, s(~w)) (3)

Negator-based shiftingWe can simply extend the
basic shifting model above to consider the lexi-
cal information of negators:f(s(~w)) = s(~w) −
sign(s(~w)) ∗C(wn). That is, each negator has its
own C. We call this modelnegator-based shift-
ing. We will show that this model also statistically
significantly outperforms the basic shifting with-
out overfitting, although the number of parameters
have increased.



Combined shifting We further combine the
negator-based shiftingand polarity-based shift-
ing above: f(s(~w)) = s(~w) − sign(s(~w)) ∗
C(wn, sign(s(~w))). This shifting model is
based on negators and the polarity of the text
they modify: constants can be different for each
negator-polarity pair. The number of parameters
in this model is the multiplication of number
of negators by two (the number of sentiment
polarities). This model further improves the fitting
performance on the test data.

4 Semantics-enriched modeling

Negators can interact with arguments in complex
ways. Figure 1 shows the distribution of the ef-
fect of negators on sentiment without considering
further semantics of the arguments. The question
then is that whether and how much incorporating
further syntax and semantic information can help
better fit or predict the negation effect. Above, we
have considered the semantics of the negators. Be-
low, we further make the models to be dependent
on the arguments. This can be written as:

s(wn, ~w)
def
= f(wn, s(~w), r(~w)) (4)

In the formula,r(~w) is a certain type of repre-
sentation for the argument~w and it models the se-
mantics or/and syntax of the argument. There ex-
ist different ways of implementingr(~w). We con-
sider two models in this study: one dropss(~w) in
Equation 4 and directly modelsf(wn, r(~w)). That
is, the non-uniform information shown in Figure 1
is not directly modeled. The other takes into ac-
counts(~w) too.

For the former, we adopt the recursive neu-
ral tensor network (RNTN) proposed recently by
Socher et al. (2013), which has showed to achieve
the state-of-the-art performance in sentiment anal-
ysis. For the latter, we propose a prior sentiment-
enriched tensor network (PSTN) to take into ac-
count the prior sentiment of the arguments(~w).

4.1 RNTN: Recursive neural tensor network

A recursive neural tensor network (RNTN) is
a specific form of feed-forward neural network
based on syntactic (phrasal-structure) parse tree
to conduct compositional sentiment analysis. For
completeness, we briefly review it here. More de-
tails can be found in (Socher et al., 2013).

As shown in theblackportion of Figure 2, each
instance of RNTN corresponds to a binary parse

Figure 2: Prior sentiment-enriched tensor network
(PSTN) model for sentiment analysis.

tree of a given sentence. Each node of the parse
tree is a fixed-length vector that encodes composi-
tional semantics and syntax, which can be used to
predict the sentiment of this node. The vector of a
node, sayp2 in Figure 2, is computed from thed-
dimensional vectors of its two children, namelya
andp1 (a, p1 ∈ R

d×1), with a non-linear function:

p2 = tanh(

[

a

p1

]T

V [1:d]

[

a

p1

]

+W

[

a

p1

]

) (5)

where,W ∈ R
d×(d+d) andV ∈ R

(d+d)×(d+d)×d

are the matrix and tensor for the composition func-
tion. A major difference of RNTN from the con-
ventional recursive neural network (RRN) (Socher
et al., 2012) is the use of the tensorV in order
to directly capture the multiplicative interaction of
two input vectors, although the matrixW implic-
itly captures the nonlinear interaction between the
input vectors. The training of RNTN uses conven-
tional forward-backward propagation.

4.2 PSTN: Prior sentiment-enriched tensor
network

The non-uniform distribution in Figure 1 has
showed certain correlations between the sentiment
values ofs(wn, ~w) ands(~w), and such informa-
tion has been leveraged in the models discussed in
Section 3. We intend to devise a model that imple-
ments Equation 4. It bridges between the models
we have discussed above that use eithers(~w) or
r(~w).

We extend RNTN to directly consider the senti-
ment information of arguments. Consider the node
p2 in Figure 2. When calculating its vector, we
aim to directly engage the sentiment information
of its right child, i.e., the argument. To this end,
we make use of the sentiment class information of



p1, noted aspsen1 . As a result, the vector ofp2 is
calculated as follows:

p2 = tanh(

[

a

p1

]T

V [1:d]

[

a

p1

]

+W

[

a

p1

]

(6)

+

[

a

psen1

]T

V sen[1:d]

[

a

psen1

]

+W sen

[

a

psen1

]

)

As shown in Equation 6, for the node vector
p1 ∈ R

d×1, we employ a matrix, namelyW sen ∈
R
d×(d+m) and a tensor,V sen ∈ R

(d+m)×(d+m)×d,
aiming at explicitly capturing the interplays be-
tween the sentiment class ofp1, denoted aspsen1 (∈
R
m×1), and the negatora. Here, we assume the

sentiment task hasm classes. Similar to Wilson
et al. (2005), we regard the sentiment ofp1 as
the prior sentiment, so we denote our method as
prior sentiment-enriched tensor network (PSTN),
In Figure 2, thered portion shows the added com-
ponents of PSTN.

With the new matrix and tensor, we then have
θ = (V, V sen,W,W sen,W label, L) as the PSTN
model’s parameters. Here,L denotes the vector
representations of the word dictionary.

4.2.1 Inference and Learning

Inference and learning in PSTN follow a forward-
backward propagation process similar to that in
(Socher et al., 2013), and for completeness, we de-
pict the details as follows.

During learning, following the method used by
the RNTN model in (Socher et al., 2013), our
model aims to minimize the cross-entropy error
between the predicted distributionyi ∈ R

m×1 at
nodei and the target distributionti ∈ R

m×1 at that
node. That is, the error for a sentence is calculated
as:

E(θ) =
∑

i

∑

j

tij logyij + λ ‖θ‖2 (7)

where, λ represents the regularization hyperpa-
rameters, andj ∈ m denotes thej-th element of
the multinomial target distribution.

To minimizeE(θ), the gradient of the objec-
tive function with respect to each of the param-
eters inθ is calculated efficiently via backprop-
agation through structure, as proposed by Goller
and Kchler (1996). Specifically, we first compute
the prediction errors in all tree nodes bottom-up.
After this forward process, we then calculate the

derivatives of the softmax classifiers at each node
in the tree in a top-down fashion. We will discuss
the gradient computation for theV sen andW sen

in detail next. Note that the gradient calculations
for theV,W,W label, L are the same as that of pre-
sented in (Socher et al., 2013).

In the backpropogation process of the training,
each node (except the root node) in the tree car-
ries two kinds of errors: the local softmax error
and the error passing down from its parent node.
During the derivative computation, the two errors
will be summed up as the complement incoming
error for the node. We denote the complete incom-
ing error and the softmax error vector for nodei
asδi,com ∈ R

d×1 andδi,s ∈ R
d×1, respectively.

With this notation, the error for the root nodep2
can be formulated as follows.

δp2,com = δp2,s

= (W T (yp2 − tp2))⊗ f
′

([a; p1]) (8)

where⊗ is the Hadamard product between the two
vectors andf

′

is the element-wise derivative of
f = tanh. With the results from Equation 8, we
then can calculate the derivatives for theW sen at
nodep2 using the following equation:

∂Ep2

W sen
= δp2,com([a; psen1 ])T

Similarly, for the derivative of each slicek(k =
1, . . . , d) of theV sen tensor, we have the follow-
ing:

∂Ep2

V sen
[k]

= δ
p2,com
k

[

a

psen1

] [

a

psen1

]T

Now, let’s form the equations for computing the
error for the two children of thep2 node. The dif-
ference for the error atp2 and its two children is
that the error for the latter will need to compute the
error message passing down fromp2. We denote
the error passing down asδp2,down, where the left
child and the right child ofp2 take the 1st and 2nd

half of the errorδp2,down, namelyδp2,down[1 : d]
and δp2,down[d + 1 : 2d], respectively. Follow-
ing this notation, we have the error message for
the two children ofp2, provided that we have the
δp2,down:

δp1,com = δp1,s + δp2,down[d+ 1 : 2d]

= (W T (yp1 − tp1))⊗ f
′

([b; c])

+ δp2,down[d+ 1 : 2d]



The incoming error message of nodea can be
calculated similarly. Finally, we can finish the
above equations with the following formula for
computingδp2,down:

δp2,down = (W T δp2,com)⊗ f
′

([a; p1]) + δtensor

where

δ
tensor = [δV [1 : d] + δ

V sen

[1 : d], δV [d+ 1 : 2d]]

=
d∑

k=1

δ
p2,com

k (V[k] + (V[k])
T )⊗ f

′

([a; p1])[1 : d]

+
d∑

k=1

δ
p2,com

k (V sen
[k] + (V sen

[k] )T )⊗ f
′

([a; psen1 ])[1 : d]

+
d∑

k=1

δ
p2,com

k (V[k] + (V[k])
T )⊗ f

′

([a; p1])[d + 1 : 2d]

5 Experiment set-up

Data As described earlier, the Stanford Sentiment
Treebank (Socher et al., 2013) has manually anno-
tated, real-valued sentiment values for all phrases
in parse trees. This provides us with the training
and evaluation data to study the effect of negators
with syntax and semantics of different complex-
ity in a natural setting. The data contain around
11,800 sentences from movie reviews that were
originally collected by Pang and Lee (2005). The
sentences were parsed with the Stanford parser
(Klein and Manning, 2003). The phrases at all
tree nodes were manually annotated with one of 25
sentiment values that uniformly span between the
positive and negative poles. The values are nor-
malized to the range of [0, 1].

In this paper, we use a list of most frequent
negators that include the wordsnot, no, never, and
their combinations with auxiliaries (e.g.,didn’t).
We search these negators in the Stanford Senti-
ment Treebank and normalize the same negators to
a single form; e.g.,“is n’t” , “isn’t” , and“is not”
are all normalized to “isnot”. Each occurrence of
a negator and the phrase it is directly composed
with in the treebank, i.e.,〈wn, ~w〉, is considered
a data point in our study. In total, we collected
2,261 pairs, including 1,845 training and 416 test
cases. The split of training and test data is same as
specified in (Socher et al., 2013).
Evaluation metrics We use the mean absolute er-
ror (MAE) to evaluate the models, which mea-
sures the averaged absolute offsets between the
predicted sentiment values and the gold stan-
dard. More specifically, MAE is calculated as:
MAE = 1

N

∑

〈wn, ~w〉 |(ŝ(wn, ~w)− s(wn, ~w))|,

whereŝ(wn, ~w) denotes the gold sentiment value
and s(wn, ~w) the predicted one for the pair
〈wn, ~w〉, and N is the total number of test in-
stances. Note that mean square error (MSE) is an-
other widely used measure for regression, but it is
less intuitive for out task here.

6 Experimental results

Overall regression performance Table 1 shows
the overall fitting performance of all models. The
first row of the table is a random baseline, which
simply guesses the sentiment value for each test
case randomly in the range [0,1]. The table shows
that the basicreversingandshifting heuristics do
capture negators’ behavior to some degree, as their
MAE scores are higher than that of the baseline.
Making the basic shifting model to be dependent
on the negators (model 4) reduces the prediction
error significantly as compared with the error of
the basic shifting (model 3). The same is true
for the polarity-based shifting (model 5), reflect-
ing that the roles of negators are different when
modifying positive and negative phrases. Merging
these two models yields additional improvement
(model 6).

Assumptions MAE
Baseline

(1) Random 0.2796
Non-lexicalized

(2) Reversing 0.1480*
(3) Basic shifting 0.1452*

Simple-lexicalized
(4) Negator-based shifting 0.1415†
(5) Polarity-based shifting 0.1417†
(6) Combined shifting 0.1387†

Semantics-enriched
(7) RNTN 0.1097**
(8) PSTN 0.1062††

Table 1: Mean absolute errors (MAE) of fitting
different models to Stanford Sentiment Treebank.
Models marked with an asterisk (*) are statisti-
cally significantly better than the random baseline.
Models with a dagger sign (†) significantly outper-
form model (3). Double asterisks ** indicates a
statistically significantly different from model (6),
and the model with the double dagger††is signif-
icantly better than model (7). One-tailed paired
t-test with a 95% significance level is used here.

Furthermore, modeling the syntax and seman-



tics with the state-of-the-art recursive neural net-
work (model 7 and 8) can dramatically improve
the performance over model 6. Note that the two
neural network based models incorporate the syn-
tax and semantics by representing each node with
a vector. One may consider that a straightforward
way of considering the semantics of the modified
phrases is simply memorizing them. For example,
if a phrasevery goodmodified by a negatornot
appears in the training and test data, the system
can simply memorize the sentiment score ofnot
very goodin training and use this score at testing.
When incorporating this memorizing strategy into
model (6), we observed a MAE score of 0.1222.
It’s not surprising that memorizing the phrases has
some benefit, but such matching relies on the exact
reoccurrences of phrases. Note that this is a spe-
cial case of what the neural network based models
can model.
Discriminating negators The results in Table 1
has demonstrated the benefit of discriminating
negators. To understand this further, we plot in
Figure 3 the behavior of different negators: the
x-axis is a subset of our negators and the y-axis
denotes absolute shifting in sentiment values. For
example, we can see that the negator “isnever”
on average shifts the sentiment of the arguments
by 0.26, which is a significant change considering
the range of sentiment value is [0, 1]. For each
negator, a 95% confidence interval is shown by
the boxes in the figure, which is calculated with
the bootstrapping resampling method. We can ob-
serve statistically significant differences of shift-
ing abilities between many negator pairs such as
that between “is never” and “do not” as well as
between “doesnot” and “can not”.

Figure 3 also includes three diminishers (the
white bars), i.e.,barely, unlikely, andsuperficial.
By following (Kennedy and Inkpen, 2006), we ex-
tracted 319 diminishers (also calledunderstate-
mentor downtoners) from General Inquirer3. We
calculated their shifting power in the same man-
ner as for the negators and found three diminish-
ers having shifting capability in the shifting range
of these negators. This shows that the boundary
between negators and diminishers can by fuzzy.
In general, we argue that one should always con-
sider modeling negators individually in a senti-
ment analysis system. Alternatively, if the model-
ing has to be done in groups, one should consider

3http://www.wjh.harvard.edu/ inquirer/
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Figure 3: Effect of different negators in shifting
sentiment values.
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Figure 4: The behavior of individual negators in
negated negative (nn) and negated positive (np)
context.

clustering valence shifters by their shifting abili-
ties in training or external data.

Figure 4 shows the shifting capacity of negators
when they modify positive (blue boxes) or nega-
tive phrases (red boxes). The figure includes five
most frequently used negators found in the sen-
timent treebank. Four of them have significantly
different shifting power when composed with pos-
itive or negative phrases, which can explain why
the polarity-based shifting model achieves im-
provement over the basic shifting model.

Modeling syntax and semantics We have seen
above that modeling syntax and semantics through
the-state-of-the-art neural networks help improve
the fitting performance. Below, we take a closer
look at the fitting errors made at different depths
of the sentiment treebank. Thedepthhere is de-



Figure 5: Errors made at different depths in the
sentiment tree bank.

fined as the longest distance between the root of a
negator-phrase pair〈wn, ~w〉 and their descendant
leafs. Negators appearing at deeper levels of the
tree tend to have more complicated syntax and se-
mantics. In Figure 5, the x-axis corresponds to
different depths and y-axis is the mean absolute
errors (MAE).

The figure shows that both RNTN and PSTN
perform much better at all depths than the model 6
in Table 1. PSTN outperforms RNTN more sig-
nificantly at greater depths, which suggests that
when syntactic/semantic complexity increases, us-
ing the so-calledprior sentiment of the phrases be-
ing modified is more reliable than using only their
semantic/syntactic vectors. The errors made by
model 6 is bumpy, as the model considers no se-
mantics and hence its errors are not dependent on
the depths. On the other hand, the errors of RNTN
and PSTN monotonically increase with depths, in-
dicating the increase in the task difficulty.

7 Conclusions

Negation plays a fundamental role in modifying
sentiment. In the process of semantic compo-
sition, the impact of negators is complicated by
the syntax and semantics of the text spans they
modify. This paper provides a comprehensive
and quantitative study of the behavior of negators
through a unified view of fitting human annota-
tion. We first measure the modeling capabilities of
two influential heuristics on a sentiment treebank
and find that they capture some effect of negation;
however, extending these non-lexicalized models
to be dependent on the negators improves the per-

formance statistically significantly. The detailed
analysis reveals the differences in the behavior
among negators, and we argue that they should al-
ways be modeled separately. We further make the
models to be dependent on the text being modi-
fied by negators, through adaptation of a state-of-
the-art recursive neural network to incorporate the
syntax and semantics of the arguments; we dis-
cover this further reduces fitting errors.

References

Farah Benamara, Baptiste Chardon, Yannick Mathieu,
Vladimir Popescu, and Nicholas Asher. 2012. How
do negation and modality impact on opinions? In
Proceedings of the ACL-2012 Workshop on Extra-
Propositional Aspects of Meaning in Computational
Linguistics, pages 10–18, Jeju, Republic of Korea.

Yejin Choi and Claire Cardie. 2008. Learning with
compositional semantics as structural inference for
subsentential sentiment analysis. InProceedings of
the Conference on Empirical Methods in Natural
Language Processing, EMNLP ’08, pages 793–801,
Honolulu, Hawaii.

Christoph Goller and Andreas Kchler. 1996. Learn-
ing task-dependent distributed representations by
backpropagation through structure. InIn Proc. of
the ICNN-96, pages 347–352, Bochum, Germany.
IEEE.

Sanda Harabagiu, Andrew Hickl, and Finley Lacatusu.
2006. Negation, contrast and contradiction in text
processing. InAAAI, volume 6, pages 755–762.

Vasileios Hatzivassiloglou and Kathleen R. McKeown.
1997. Predicting the semantic orientation of adjec-
tives. InProceedings of the 8th Conference of Euro-
pean Chapter of the Association for Computational
Linguistics, EACL ’97, pages 174–181, Madrid,
Spain.

Lifeng Jia, Clement Yu, and Weiyi Meng. 2009. The
effect of negation on sentiment analysis and retrieval
effectiveness. InProceedings of the 18th ACM Con-
ference on Information and Knowledge Manage-
ment, CIKM ’09, pages 1827–1830, Hong Kong,
China. ACM.

Alistair Kennedy and Diana Inkpen. 2006. Senti-
ment classification of movie reviews using contex-
tual valence shifters.Computational Intelligence,
22(2):110–125.

Svetlana Kiritchenko, Xiaodan Zhu, and Saif Moham-
mad. 2014. Sentiment analysis of short informal
texts. (to appear) Journal of Artificial Intelligence
Research.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. InProceedings of the



41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1, ACL ’03, pages 423–
430, Sapporo, Japan. Association for Computational
Linguistics.

Emanuele Lapponi, Jonathon Read, and Lilja Ovre-
lid. 2012. Representing and resolving negation
for sentiment analysis. In Jilles Vreeken, Charles
Ling, Mohammed Javeed Zaki, Arno Siebes, Jef-
frey Xu Yu, Bart Goethals, Geoffrey I. Webb, and
Xindong Wu, editors,ICDM Workshops, pages 687–
692. IEEE Computer Society.

Jingjing Liu and Stephanie Seneff. 2009. Review sen-
timent scoring via a parse-and-paraphrase paradigm.
In EMNLP, pages 161–169, Singapore.

Bing Liu and Lei Zhang. 2012. A survey of opin-
ion mining and sentiment analysis. In Charu C. Ag-
garwal and ChengXiang Zhai, editors,Mining Text
Data, pages 415–463. Springer US.

François Mairesse, Joseph Polifroni, and Giuseppe
Di Fabbrizio. 2012. Can prosody inform sentiment
analysis? experiments on short spoken reviews. In
ICASSP, pages 5093–5096, Kyoto, Japan.

Tom M Mitchell. 1997. Machine learning. 1997.Burr
Ridge, IL: McGraw Hill, 45.

Saif M. Mohammad, Bonnie J. Dorr, Graeme Hirst, and
Peter D. Turney. 2013. Computing lexical contrast.
Computational Linguistics, 39(3):555–590.

Karo Moilanen and Stephen Pulman. 2007. Senti-
ment composition. InProceedings of RANLP 2007,
Borovets, Bulgaria.

Roser Morante and Caroline Sporleder. 2012. Modal-
ity and negation: An introduction to the special is-
sue.Computational linguistics, 38(2):223–260.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. InProceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics, ACL ’05, pages 115–124.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis.Foundations and Trends in In-
formation Retrieval, 2(1–2):1–135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up? sentiment classification us-
ing machine learning techniques. InProceedings of
EMNLP, pages 79–86, Philadelphia, USA.

Livia Polanyi and Annie Zaenen. 2004. Contextual
valence shifters. InExploring Attitude and Affect in
Text: Theories and Applications (AAAI Spring Sym-
posium Series).

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In

Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’12,
Jeju, Korea. Association for Computational Linguis-
tics.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. InProceedings of the Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP ’13, Seattle, USA. Association for Compu-
tational Linguistics.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-
based methods for sentiment analysis.Computa-
tional Linguistics, 37(2):267–307.

Peter Turney. 2002. Thumbs up or thumbs down? se-
mantic orientation applied to unsupervised classifi-
cation of reviews. InACL, pages 417–424, Philadel-
phia, USA.

Michael Wiegand, Alexandra Balahur, Benjamin Roth,
Dietrich Klakow, and Andrés Montoyo. 2010. A
survey on the role of negation in sentiment analysis.
In Proceedings of the Workshop on Negation and
Speculation in Natural Language Processing, NeSp-
NLP ’10, pages 60–68, Stroudsburg, PA, USA. As-
sociation for Computational Linguistics.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. InProceedings of the Con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Processing,
HLT ’05, pages 347–354, Stroudsburg, PA, USA.
Association for Computational Linguistics.


