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ABSTRACT 

This paper addresses a relation-extraction problem that aims to identify semantic relations among 

medical concepts in clinical text. The objectives are two-fold. First, we extend an earlier one-page 

description of a top-ranked model (appearing as a part of [5]) to a necessary level of details, with 

the belief that designing good features is the most critical part of our systems and hence deserves a 

detailed discussion. We also present a precise quantification of the contributions of a wide variety of 

knowledge sources with very different nature. In addition, we show the end-to-end results obtained 

on the noisy output of a top-ranked concept detector, which could help construct a more complete 

view of the state of the art in the real-world scenario.  

 Second, we reformulate our models into a composite-kernel framework and present the 

best result, according to our knowledge, on the same dataset. 
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1 INTRODUCTION 

The increasing availability of digitalized medical texts, e.g., those having already been converted to 

and encoded with ASCII or Unicode
1
, has actually opened a promising way to collect real-life, real-

time, and large-sample-based knowledge from real patients, in contrast or in complementary to 

knowledge that is obtained in laboratories, with more controlled experiments, or based on a relative-

ly smaller number of samples. While the order of magnitude of textual data continues to make man-

ual analysis less affordable, computers' ability in understanding human languages has improved in 

the past decades, particularly through the use of data-driven approaches.  

 

This paper addresses a core information extraction problem―identifying semantic relations among 

medical concepts in discharge summaries and progress reports, i.e., relations existing between med-

ical problems, tests, and treatments. The problem is defined by the i2b2/VA-2010 Challenge 

[20][[21] and we will revisit it in Section 2.  

 

The objectives of this paper are two-fold. We first extend an earlier one-page description (as a part 

of [5]) of a top-ranked model in the i2b2-2010 Challenge to a necessary level of details, with the 

criterion that a reader should be able to reimplement all our models―we believe that designing 

good features is the most critical part of our systems and hence deserves a detailed discussion. We 

also present a precise quantification of the contributions of a wide variety of knowledge sources 

with very different nature. More exactly, the features we have carefully explored for the problem 

range from superficial word/concept statistics to explicit/implicit domain semantics, shallow and 

deep syntactic features, and knowledge learned from unlabelled data. In addition, we introduce the 

  
1  In a more general viewpoint, one should consider the transcripts of spoken content, e.g., those of doctors' voice recordings, to be a 

special case of such textual data, where human medical transcription (MT) and editing (MTE) have already formed their own market, and 

automatic speech recognition (ASR) has started to play a more important role. 
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end-to-end result obtained on the noisy output of a top-ranked concept detector: we hope this would 

help construct a more complete view of the state of the art in the real-world scenario that is not 

evaluated in i2b2-2010 itself.  

 

Second, we reformulate our models into a composite-kernel framework, which results in the best 

result, according to our knowledge, on the i2b2-2010 dataset. Unlike an open-domain task that often 

uses newswire articles, the domain-specific task here involves abundant domain semantics, 

including not only that from resources explicitly created by domain experts, e.g., UMLS, but also 

that automatically extracted, e.g., from MEDLINE and unlabelled data. The results allow us to 

conclude that complex syntactic structures can further improve the modeling quality for the 

semantic task, even when abundant domain-specific knowledge has already been carefully explored, 

although we also observed that not all syntactic kernels that are effective in the open domain are 

useful in our task here. 

2 PROBLEM 

The problem that we are concerned with here is identifying semantic relations mentioned between 

medical concepts in plain clinical texts. To begin with an example, a sentence in a patient's dis-

charge summary reads: 

 

... He was a poor candidate for anticoagulation because of his history 

of metastatic Melanoma.  ... 
 

 

The above sentence mentions a relation between a treatment (anticoagulation) and a problem (met-

astatic Melanoma); that is, a treatment is not appropriate for a medical problem. More exactly, our 

work here follows the definition of the i2b2/VA-2010 Challenge, which aims to recognize three 
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types of relations: treatment-problem, test-problem, and problem-problem relations. The more de-

tailed definitions for relations, with examples, are shown in Table I. 

Table I.  Definitions of medical-concept relations by i2b2. Concepts in the examples are 
in brackets, with  pr, tr, and te representing problem, treatment, and test, respectively. 

   TYPE 1: TREATMENT-PROBLEM RELATIONS 

 TrIP Treatment improves problem 
[hypertension]/pr was controlled on [hydrochlorothiazide]/tr 

TrWP Treatment worsens problem 
He was discharged to home to be followed for [her coronary ar-
tery disease]/pr following [two failed bypass graft procedure]/tr 

TrCP Treatment causes problem 
[Hypothyroidism]/pr following near total [thyroidectomy]/tr 

TrAP Treatment administered for problem 

[antibiotic therapy]/tr for presumed [right forearm phlebitis]/pr 

TrNAP Treatment is not administered because of medical problem 

He was a poor candidate for [anticoagulation]/tr because of his 
history of [metastatic Melanoma]/pr. 

 NTrP No relation between a treatment and a problem. 
 

   TYPE 2: TEST-PROBLEM RELATIONS 

 TeRP Test reveals problem 
patient noted to have [acute or chronic Hepatitis]/pr by [chemis-
tries]/te 

TeCP Test conducted to investigate problem 
[chest xray]/te done to rule out [pneumonia]/pr 

 NTeP No relation between a test and a problem. 

 

   TYPE 3:  PROBLEM-PROBLEM RELATIONS 

 PIP Medical problem indicates medical problem 
a history of [noninsulin dependent diabetes mellitus]/pr, now 
presenting with [acute blurry vision on the left side]/pr. 

 NPP No relation between two medical problems. 
 

 

The definitions of these categories of relations are rather self-explanatory, while details can be fur-

ther found in the i2b2 reference provided.  We note here that although the task is so defined, the 
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methodology we will discuss is not necessarily so limited, i.e., the method is easily extendable to 

detect other types of semantic relations, which we believe is also a goal of the i2b2 competition it-

self. As shown in Table I, we have three general types of relations that contain 6, 3, and 2 specific 

categories, respectively, when including the negative categories where no relations associate two 

concepts. For clearness, in the remainder of the paper, if not otherwise noted, a type of relation re-

fers to one of the three general classes of relations, while a category refers to a specific relation in 

each type; e.g., we say treatment-problem is a type of relation, while TrIP is a category of relation.  

 

Following the definition of i2b2/VA-2010 Challenge, this paper will only be concerned with the 

relations defined above and that appear in the same sentences, while sparse relations between two 

concepts from different sentences are not discussed here. Note that the examples shown in Table I 

are chosen for simpleness―they are all short sentences―while the real relations we have to deal 

with could be more complicated. With these definitions, our task here is to classify the relation be-

tween a pair of medical concepts to one of the relation categories defined in the table. Also, we note 

that in i2b2/VA-2010, concepts are given for the relation-detection task, while in this paper, we will 

also report the performance of not assuming such an availability, by employing a state-of-the-art 

concept detector to find medical concepts automatically. In summary, the task described above is a 

basic, well defined
2
 problem in general, and we think it is a good start to explore text mining in 

medical texts. 

 

 

 

 

  
2 Note that the actual realization of the definition is through data annotation by human judges, who may disagree on some cases, while 

i2b2 has not made available such statistics yet. 
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3 METHODS 

3.1 Concept annotation 

Our relation-detection task takes as input the clinical documents with medical concepts annotated. 

In the i2b2/VA-2010 Challenge set-up, medical concepts are manually annotated by human judges. 

This setup would help us understand the upper-bound performance of relation detection without 

considering noise in concept detection.  To observe the performance under a more realistic situation, 

where concepts are automatically tagged, we also tag concepts with a top-ranked concept recognizer 

[5]. In addition, we also use the same recognizer to leverage unlabeled data in order to further im-

prove relation-detection performance, as discussed later. So, we briefly introduce this concept 

recognition system here. 

 

Tagging medical concepts can be generally treated as a named entity recognition (NER) problem, 

similar to that defined and evaluated early in Message Understanding Conference (MUC) [10] and 

more recently in Automatic Content Extraction (ACE) [9]. While open-domain NER that identifies 

persons, organizations, and locations, often from news articles, can often achieve a high perfor-

mance, sometimes comparable to human performance, the situation in clinical text would be less 

ideal, partially revealed in the results shown in the i2b2/VA-2010 Challenge itself.  

 

The automatic concept recognition model included in this paper is a discriminative semi-Markov 

model [5], trained with passive-aggressive online updates. This allows for conducting the task with-

out requiring a Begin/Inside/Outside (BIO) tagging formalism, and provides at least two major ad-

vantages. First, by labeling multi-token spans, labels cohere naturally, which allows the tagger to 

perform well without tracking the transitions between labels. Second, semi-Markov models allow 

for more flexibility in feature construction as one has access to the entire text span of a concept; for 

example, it is ready to include features like concept lengths. At the same time, the model was also 
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designed to consider features that are unique to BIO otherwise, e.g., those pertaining to the begin-

ning of a concept, by creating copies of all word-level features that indicate if the word begins or 

ends a concept. The model was trained using an online algorithm called the Passive-Aggressive 

(PA) algorithm [4] with a 0-1 loss. This concept recognition model finally achieves a 0.852 F-

measure on the test set of the i2b2 concept detection task.  

3.2 Relation detection 

 

One important goal of concept recognition is to reveal the relations between them, which is the 

problem we are concerned here in this paper.  Relation detection, by itself, is a typical multi-class 

categorization task: a relation between two concerned concepts is classified as one of the categories 

defined above in Table I. 

  

We have explored different classifiers in our development phase such as maximum entropy (ME), 

support vector machine (SVM) with different kernels, logistic regression, k-nearest neighbor, but 

did not observe significant difference between them according to our cross validation conducted on 

the training data. This suggests that we should focus our attention more on the knowledge used in 

this decision-making process, than on the classification algorithms themselves. In the remainder of 

this paper, the results presented were acquired by using ME, which is relatively less memory de-

manding (e.g., compared with the memory-based kNN) and less computationally expensive (e.g., 

compared with SVM). This not only allowed us to explore the performance of a wide variety of fea-

tures of different nature, e.g., with cross validation, when preparing the i2b2 competition itself in 

the given time, it also facilitated our further analysis of the problem; e.g., we trained approximately 

900 models for our regression analysis, as discussed later in Section 7.3 in the paper.  The whole 

task is evaluated with an asymmetric metric, i.e., the micro-averaged F-measure, in which a false-
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positive error and a false-negative error can have a different effect. We will detail the evaluation 

measure in the experiment set-up session later.  

 

A maximum entropy model (ME) follows the principle of maximum-entropy estimation to infer the 

unknown parameters of a discriminative model. The basic idea behind is that while a model satisfies 

all given constraints imposed by training data, it maximizes the (conditional) entropy defined over 

training data and labels, i.e., preferring a uniform distribution as possible when satisfying con-

straints.  As it has been shown, e.g., in , an ME model always conforms to an exponential form: 
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For our task here, x stands for a concept pair and its context in the sentence, y is the corresponding 

relation label, and fi(x, y) is a feature function with λi being a model parameter that needs to be esti-

mated to weight the contribution of the feature. Z(x) is a normalizing coefficient to ensure a proper 

probabilistic distribution. During testing, an assignment of y is found to maximize p(y|x) above, 

while during training, given a set of training data that introduce constraints, the model parameters 

are adjusted to maximize the likelihood of generating these training data, typically tuned with a 

greedy algorithm called generalized iterative scaling (GIS). A good introduction to ME in natural 

language processing (NLP) settings can be further found in [8]. Specifically in our experiments be-

low, we utilize the ME package of OpenNLP [18]. We train three different ME classifiers, one for 

each type of categories defined in Table I. 
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With the availability of labeled data often limited, we also situate the relation-detection task in a 

semi-supervised setting. The efforts are twofold. First, we apply a bootstrapping process to unla-

beled data that are expected to obey the same distribution as the provided training data: these data 

are clinical texts of the same kinds from the same healthcare institutes as the annotated training data 

are. Second, as we will explain later, the bootstrapping is used together with a down-sampling pro-

cess in order to balance positive/negative relation categories.  

4 KNOWLEDGE SOURCES AND FEATURES 

4.1 Word/concept statistics 

We exerted intensive efforts in exploring the usefulness of various superficial word/phrase/concept 

features, expecting that a careful exploration of such basic features is not only of great importance 

for improving system performance for attending the competition, but would also help us more accu-

rately assess the usefulness of extra, more advanced knowledge such as the syntactic structures, ad-

ditional domain semantics, and knowledge embedded in unlabelled data that we will further discuss.  

 

We first borrowed the features used by a successful system [15] on a task of extracting medication 

events, by taking the following word/concept statistics into account
3
,  which we refer to as basic 

word/concept statistics. 

 
-   Three words before and after each of the two concepts 

-   All words between the two concepts 

-   Words contained in the two concepts 

-   Concepts appearing between the two concepts 

 
 

In our implementation, we made these statistics order-sensitive when applicable, motivated by the 

consideration that the distribution of features could be different under these different circumstances. 

  
3 Our baseline model here only uses the minimal features among several possible explanations of the features used in [13]. 
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For example, an order-sensitive feature used to classify treatment-problem relations to one of the 

six categories (see Table I) looks like:  













 

otherwise     0

TrAP"" &       
 treatmentthebefore isproblemthe&       
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y
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iii yxf  

 
In this example, we can see that this feature fires (taking the value 1) only if the problem in concern 

appears before (to the left of) the treatment. In general, we enforced a wider range of word/concept 

features and constraints. Specifically, we included 7-bit hierarchical word clusters calculated on the 

unlabeled data with Brown's clustering algorithm [2]. Specifically, given a corpus, the algorithm 

clusters words (i.e., word types) hierarchically into a binary tree, with each word expressed with a 

leaf. Each non-leaf node merges semantically similar words or a sub-cluster of words. Since the two 

edges connecting a non-leaf node and its children are given a label of 0 and 1, respectively, each 

leaf (word) is associated with a unique bit string representing the path from the root to it, which en-

codes semantic-category information and is used as a feature in this work. Specifically, we take the 

leftmost 7 bits for a word to represent the cluster it belongs to. A well-known application of this 

algorithm in NLP, specifically in information extraction, is discussed in [14];   

 

We also included so-called rigid features, which means that any of their occurrences invalidate the 

use of all other regular, non-rigid features.  The intuition behind is to incorporate into our statistic 

models some strict rules. For example,  if the following feature appears, we are sure that the two 

medical problems under concern have no relation associated:   “only conjunction words or phrases 

appear in between two medical problems”.  Without enforcing such features rigidly (i.e., just con-

sidering them as regular features), we observed mistakes made on these cases in our held-out da-

taset. We also included n-gram features, features related to punctuations, e.g., “stronger separators 
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such as semicolons appear in between the two concepts in concern”.  In addition, we found some 

carefully, well designed features to be particularly useful. For example, we already have features 

like " number of concepts in a sentence"; however, features such as “the number of concepts in the 

current sentence is exactly two (i.e., the two concepts whose relation is under concern)” were found 

to give additional improvement; intuitively, if a sentence contains only two concepts exactly, these 

two concepts may be more likely to have some positive relationship, which in turn needs to be re-

flected in feature designing. We also added sentence boundaries <S> and </S> at the beginning and 

the end of each sentence to reflect whether words or concepts are close to the sentence boundaries.  

In the evaluation section, we refer to these augmented word/concept features discussed here as “rich 

word/concept features”.  

 

 

4.2 Domain semantics 

Intuitively, domain knowledge is expected to be one of the major keys to finding the correct rela-

tions. Actually such knowledge has already been implicitly captured by the classifier trained on the 

provided training data with the word/concept statistics described above. For example, in the sen-

tence "the patient had a non-ST elevation MI with evidence of a high percent mid LAD lesion", the 

domain knowledge―the problem "mid LAD lesion" often indicates another problem "elevation  

MI"―is likely to be learned directly from the training data if such examples appear frequently 

enough. In another example, "... nitroglycerin 0.3 mg sublingually p.r.n. chest pain or shortness of 

breath ...", the role of the abbreviation p.r.n. in predicting medical relations is also learnable, again, 

if it is frequent enough, even when computers do not necessarily know what p.r.n. really stands for 

(it refers to pro re nata, meaning as the circumstance arises). 
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The limited availability of labeled data, however, often results in sparseness and restricts the do-

main knowledge that can be directly acquired from training cases. To have more comprehensively 

understanding of the role of domain semantics, we will explore the effectiveness of (1) manually 

created, explicit domain knowledge, (2) automatically acquired domain semantics that is embedded 

in a larger volume of domain texts, that are not necessarily obeying the same feature distribution as 

the training set is, but still contain relevant domain knowledge.    

 

4.2.1  Manually-authored domain semantics 

We explored two different categories of manually-authored domain semantics. The first is generic 

medical knowledge bases that were manually created for a general purpose of automatic healthcare 

text processing, for which we used the well-known UMLS/MetaMap knowledge base. In addition, 

we also manually built word/phrase clusters specific for clinical summaries and progress reports, in 

order to provide some degree of smoothing on these lexicalized features. 

UMLS/MetaMap 

The first explicit, manually created knowledge base we incorporate is the Unified Medical Lan-

guage System (UMLS) [19], created and maintained by the U.S. National Library of Medicine 

(NLM) to "facilitate the development of computer systems that behave as if they 'understand' the 

meaning of the language of biomedicine and health." This knowledge base contains a unified the-

saurus and ontology, the mapping between different terminology systems and disparate databases, 

as well as the corresponding software tools that perform on these data.   

 

Specifically in this study, we applied MetaMap [1] first, which is a widely-used entity recognition 

tool in the biomedical domain. We used MetaMap since it can recognize lexical variations of medi-

cal concepts within their context, before we were able to look up the UMLS labels for these con-

cepts. More specifically, MetaMap is a widely available program that is based on UMLS and pro-
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vides access from biomedical text to the UMLS Metathesaurus; the mapping covers over 1 million 

biomedical concepts and 5 million concept names, and was created from more than 100 different 

vocabulary sources with human intervention of editing and reviewing. With this, we can therefore 

represent words also by their domain-specific semantic categories, i.e., semantic types of the UMLS 

semantic network, such as "sign or symptom" and "therapeutic or preventive procedure", and these 

labels will be used as features to hopefully smooth the sparseness caused by lexicalized features. 

The semantic-type labels are associated with words in our systems: when MetaMap assigns a label 

to a multi-word phrase, we break the phrase into words and assign the same label to each word to 

acquire flexibility in feature construction. More specifically, we use the unigram Metathesaurus 

labels of the three words before and after the two concepts in concern, those of the words between 

them and words contained in them. In addition, we also use Metathesaurus label pairs associated 

with each word pair between the two concepts, i.e., one label from each concept. 

 Domain Word/Phrase Clusters 

We have also manually created word/phrase clusters specifically for clinical text to further smooth 

data sparseness.  For example, we created a list to include words, phrases, and doctors’ shorthands 

that express indication such as "p/w", "have to do with", " secondary to", " assoc w/".  Another ex-

ample is a resistance list containing words/phrases such as "unresponsive", "turn down", and "hold 

off".  We extracted these features in a way similar to that described in Section 4.1. That is, we iden-

tify if words in a domain-word list appear within three words before or after the two concepts under 

concern, and extract these as binary features. Similarly, we check the occurrences of these domain 

word/phrase lists among words between the two concepts and words in the concepts. An example of 

such features is: "a resistance word appears within three words after a problem." 

 

4.2.2 Automatically-acquired domain knowledge 
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In addition to the explicit domain semantics that are created manually, there is abundant domain 

knowledge embedded in much larger free-text. We are also curious about its usefulness in this task. 

MEDLINE, for example, is a bibliographic database of life sciences and biomedical information. It 

includes 5,000 selected resources and covers such publications from 1950s to the present, including 

health-related fields such as medicine, nursing, pharmacy, dentistry, veterinary medicine, preclini-

cal sciences, and  healthcare.  The database contains more than 18 million records approximately 

and is widely used in various healthcare-related research. Specifically in this work, we calculate 

pointwise mutual information (PMI) between two given concepts in all the abstracts of MEDLINE 

articles to estimate their relatedness. The motivation is that such information could provide evi-

dences to help determine, e.g., the likelihood that two concepts have a positive relation, though not 

necessarily their specific relation categories. 

4.3 Syntax 

4.3.1 Dependency structures 

We are concerned with whether the syntactic relationship between two medical concepts in a pars-

ing tree provides useful information to help discriminate their semantic relations defined in Table I, 

and if so, how effective it is. As an example, Figure 1 shows an automatically generated dependen-

cy parsing tree for the given sentence. 

Intuitively, the word “revealed”, which connects the problem “partial decompression of the spinal 

canal” and the test “a postoperative CT scan”, seems to be very indicative in predicting their rela-

tion. It also seems that even the word distance between these two concepts in the tree (i.e., the num-

Figure 1. A dependency parsing tree of an example sentence. 
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ber of words on the path that connects them) is more indicative than its counterpart in the 

word/phrase features discussed earlier, e.g., “number of words between two concepts in the (se-

quential) sentence”. We can see the former (distance in the tree) can reasonably skip the noun 

phrase "good placement of her hardware", while the latter (distance in the sequence) is likely to 

suffer from noise so introduced,  though we observed in our development phase that it is still a use-

ful feature.  

 

To acquire the empirical evidence of the usefulness of sentential syntax, we parsed the input text 

using the Charniak’s ME reranking parser [3] with its improved, self-trained biomedical parsing 

model [13]. These were then converted into Stanford dependencies [6].
 4
 The features we extracted 

from the dependency parsing trees included words, their dependency tags, and arc labels on the de-

pendency path between the two minimal trees that cover each of the two concepts, respectively, 

along with the word type and tags of their common ancestor, as well as the minimal, average and 

maximal tree distances between these two minimum-covering trees and their common ancestor.  

 

 

4.3.2.   cTAKES 

Based on IBM’s Unstructured Information Management Architecture, the cTAKES (clinical Text 

Analysis and Knowledge Extraction System) [17] created a pipeline that conducts a series of lan-

guage processing on free-text clinical notes, e.g., tokenization, spelling checking, POS (part-of-

speech) tagging, shallow parsing, negation annotating, and word sense disambiguation.  In our 

work, we employed the POS tags of the cTAKES pipeline to capture words' different roles of 

grammatical categories.  For example, a verb appearing between a treatment and a problem, particu-

  
4 We observed no improvement when extracting features directly from the phrase-structure parsing trees, although the features we ex-
tracted from dependency parsing trees should have also existed in the corresponding constituency parsing trees. This could be due to the 
advantages of dependency structures, as discussed in [11], among many others. 
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larly those in a past tense, could be more likely to indicate an existence of relation, than a present 

tense. More exactly, we use unigram POS tags of words appearing between the two concerned con-

cepts and those of the tree words before and after each concept.  

4.4 Unlabeled data 

With the often limited availability of labeled data, we also hope to further understand the usefulness 

of unlabelled clinical texts that are expected to obey the same feature distribution as the training 

data. For this purpose, we leveraged 827 extra raw discharge summaries or progress reports provid-

ed by i2b2. These documents are from the same healthcare centers as the training data, but not 

manually annotated with either concepts nor relations. We first applied a top-ranked concept-

recognition model (described in Section 3.1) to tag the three types of medical concepts, i.e., prob-

lems, treatments, and tests; then we applied our best relation-detection model trained on manually 

labeled training data to annotate relations between these automatically recognized concepts on the 

unlabelled data, from which we extracted all the features we have discussed above to retrain our 

model and repeated this bootstrapping process multiple times. More exactly, determined with the 

improvement achieved on micro F-measure scores during our development, the process was con-

ducted twice. For each epoch, filtering was applied to balance the categories with the method de-

scribed in Section 6.1.1, using a down-sampling ratio decided by the improvement achieved during 

development. Actually, system voting could be an additional choice here but we did not adopt it in 

the current implementation. 

4.5 Other models in i2b2-2010 

In this section, we briefly discuss several other models that achieve good results in i2b2-2010. The 

model proposed in [25] identifies relations in two steps: (1) finding concept pairs that have relations; 

(2) classifying these pairs into different relation categories. These two phases use features similar to 
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our word/concept features discussed in Section 4.1 with a SVM classifier. The model also includes 

several other interesting types of features.  First, Wikipedia is used as a knowledge source, where 

the links and hierarchies among Wikipedia articles are used to estimate the relatedness of two con-

cepts, if the concepts can be mapped to some Wikipedia articles.  Another interesting feature set is 

the inexact matching features, which calculate an edit distance for the contextual strings between 

two relations. The models also use some simple syntactic features such as the predicates associated 

with each concept, but not the full parse trees as we use in this paper.  Finally, the best model in [25] 

achieves an f-measure statistically tied with that of our model, and has a higher recall and lower 

precision than our model, which could be due to its use of Wikipedia and the inexact matching:  

both could increase the recall.  These two models, ours and that in [25] statistically outperform the 

other 14 models submitted to the i2b2-2010 Challenge. In addition, the approach proposed in [26] 

combines a rule-based model with a supervised classifier, forming an interesting model. By review-

ing these models, we can see that designing good features is critical for this task; the significantly 

better performance of the top two models suggests the usefulness of rich features extracted from a 

wide range of sources. 

5 COMPOSITE KERNELS 

With the above word/concept, syntactic, and semantic features, we have trained a maximum-

entropy classifier and achieved a top-ranked performance in the i2b2-2010 evaluation, statistically 

tying with another system [25].  In this section, we reformulate our models into a composite-kernel 

framework, which has achieved encouraging results in open-domain tasks [22]. We show that the 

performance of our composite-kernel-based model is significantly better than that of our previous 

top-ranked model, and it is also the best result reported, according to our knowledge, on the i2b2-

2010 relation dataset. As we have mentioned earlier, unlike a open-domain task (often using news-

wire articles), our domain-specific task here has abundant domain-specific semantic information. 



19 

 

Our results allow us to conclude that complex syntactic information can further improve the model-

ing quality for the semantic task, even when abundant domain semantics has already been carefully 

leveraged. 

 

Our composite-kernel-based framework consists of two components: the so-called wrapping kernels 

and the convolution kernel. We use the first component to wrap up our old models in order to take 

all their advantages, which will be then combined with the second component, a convolution tree 

kernel that is employed to explore an implicit, high-dimensional syntactic space.  

5.1 Kernels  

In both machine learning and natural language processing, kernel based methods have been widely 

studied and applied. In general, kernel methods are a way to extend a low dimensional feature space 

to a high dimensional one, with inexpensive computation (i.e., the kernel trick). More exactly, based 

on the fact that many machine learning algorithms, e.g., the k-nearest neighbor and perceptron, 

involve only a dot product between two feature vectors, simply replacing a dot product with a 

kernel function will map the original feature space to a high dimensional one. As such, a linearly 

non-separable problem could often become more separable. Mathematically, as long as a function is 

symmetric and the resulting kernel matrix is positive semi-definite, the function is a valid kernel 

function. Typical kernels include linear, polynomial, and radial basis functions, among others.   

 

Among many properties of kernel functions, an important one for our problem here is that the sum 

of given kernels is still a valid kernel. With this combinational property, we can use a composite-

kernel-based framework to combine our previous best model with a convolution tree kernel in order  

to explore complex syntactic structures, as suggested first in [22].  
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5.2 Wrapping kernels  

To take all the advantages of our previous best model, we use two types of kernels to incorporate all 

the features discussed in Section 4, and we call them wrapping kernels.  

5.2.1 Concept kernels 

The first type of wrapping kernel is concept kernel Kc, which incorporates features that can be asso-

ciated with a medical concept and takes the following form: 

 

 

In the formula, R1 and R2 are two relation instances, each of them involving two concepts; for 

example, R1.C1 and R1.C2 refer to the two concepts in R1, while kf   is the k
th
 feature of the 

corresponding concept. I(x,y) is an indicator function taking the value 1 if x=y and 0 otherwise, and 

it will be replaced by a kernel function in our experiments, where the form of the function is 

determined by its performance on a held-out set. Again, all features that can be associated with a 

concept are incorporated here. For example, among concept/word features described in Section 4.1, 

“three words before and after each of the two concepts” would be incorporated into the concept 

kernels. In semantic features, we incorporate the UMLS/MetaMap features and the domain 

word/phrase cluster features, among others. 


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5.2.2 Connection kernels 

The connection kernel Kn is used to represent the sequences connecting the two concepts in a 

relation and it takes the following form: 

 

In the formula, R1.Si refers to a sequence connecting the two concepts in R1. Note that sequence here 

is a general term: it refers to any forms of connections between the two concepts. For example, it 

can be a word sequence between the two concepts or a path in a dependency parse tree that connects 

the two concepts. Accordingly, ki fSR ..1  is the k
th
 feature of the sequence R1.Si.  

5.3 Convolution tree kernels 

The relations between two medical concepts could involve complex syntactic structures, although 

we have incorporated explicit syntactic features introduced in Section 4.3. As pointed out in [24], 

many NLP tasks, involving "a parse tree that tracks all subtrees", have an input domain that "cannot 

be neatly formulated as a subset of ℝd"; i.e., expressing such features in the original d-dimensional 

vector space is not straightforward and therefore such features cannot be included into the wrapping 

kernels in a straightforward way. As an example, given two relation instances, R1 and R2, and the 

two sentences they occur in, we first find two minimal trees that cover the two concepts in R1 and 

those in R2, respectively. Our aim is to estimate the similarity (a dot product) between these two 

minimal trees in the vector space formed by all their subtrees. Unfortunately, a naive algorithm that 

lists all possible subtrees is intractable as the vector size is exponential to the number of tree nodes.  

 

A convolution tree kernel is therefore proposed by [24] for such rich, high-dimensional 

representations. Specifically, to measure the dot product between two trees in the space formed by 
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all their subtrees, the convolution tree kernel employs recursive computation to calculate the 

similarity in terms of sub-structures. More exactly, through some simple algebra, the dot product 

mentioned above can be calculated  with the following formula: 

 
 


11 22
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In the equation, the sets of nodes in tree T1 and T2 are N1 and N2, respectively. C(n1, n2) is simply the 

count of common subtrees rooted at node n1 in T1 and n2 in T2, where Ii(n1) is a binary indictor 

function which takes the value 1 if and only if the subtree Ti is rooted at node n1. As such, C(n1, n2)  

can be calculated recursively in polynomial time O (|N1 | |N2 |)  with the following steps: 

 
(1)  C(n1, n2)=0 if the context-free rule production at node n1 is different from that at node n2; 

 (2)  C(n1, n2)=1 if the rule production at node n1 is same as that at node n2, and both nodes are 

pre-terminals (nodes directly above words in the surface string, e.g., POS tags.) 

 
(3)  Otherwise, the follow formula is used: 
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Where nc(n1) denotes the number of children of node n1; ch(n1,j) and ch(n2,j)  are the j

th
 

child of n1 and n2 respectively. 

 

In our experiments, we used the following formula to integrate the tree types of kernels discussed 

above, which was found to be better than several other candidates. The parameters in the formula 

were determined with a held-out dataset (α=0.15, β=0.15, d=3).   
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6 EXPERIMENT SETUP 

6.1 Data 

The data used in our experiments include the relation data of i2b2/VA-2010 Challenge, which are 

real-life discharge summaries and progress notes recorded at three healthcare and medical centers.
 5
 

For privacy consideration, all records have been fully de-identified before any manual annotation 

and data distribution. We present the detailed statistics of the training and testing data in Table II. 

We also utilized an unlabeled data set that we have mentioned in Section 4.4, which contains 827 

documents (details not presented here) and is about 2.3 times as large as the training data here. 

 

Table II reveals the unbalanced distribution of data points; e.g., the ratio of data points between PIP 

and NPP is roughly at 6:1, which needs to be coped with accordingly, particularly in the situation 

where such unbalance could be further amplified when the bootstrapping process discussed in Sec-

tion 4.4 is applied―bootstrapping could bias towards larger categories with already-learned bias 

from the previous round.  

 

6.1.1.   Down sampling 

To address the unbalanced-data problem discussed above, in all experiments presented below, we 

down-sampled the negative data points in problem-problem relations before training our models, to 

a positive/negative ratio between 1:2 and 1:4, the aim of which is to alleviate the classifiers’ bias 

towards the larger negative categories. We performed the down-sampling process in each round of 

bootstrapping when it is applied, since using already-biased output to train a new model might am-

plify the unbalance, if not intervened, as discussed in Section 4.4. During our development phase, 
  
5 Discharge summaries are from three resources: Partners HealthCare, Beth Israel Deaconess Medical Center, and the University of Pitts-

burgh Medical Center, progress notes being from the University of Pittsburgh Medical Center. 



24 

 

we found the down-sampling improves our F-measure by about 0.3-0.5 points consistently in our 5-

fold cross-validation tuning.  

Table II. Statistics of the i2b2 training and testing data 

 

 Training Set Evaluation Set  

Documents 349  477   

Concepts      

 Problems 11,968  18,500   

 Test 7,369  12,899   

 Treatment 8,500  13,560   

Relations      

 Treatment-Problem 4,319  6,949   

  TrIP 107  198   

 TrWP 56  143   

 TrCP 296  444   

 TrAP 1,423  2,486   

 TrNAP 296  191   

 NTrP 2,331  3,487   

 Test-Problem 3,573  6,072   

  TeRP 1,734  3,033   

 TeCP 303  588   

 NTeP 1,536  2,451   

 Problem-Problem 8,589  13,176   

  PIP 1,239  1,986   

 NPP 7,350  11,190   
  

 

 

6.2 Evaluation metric 

The evaluation metrics used in this paper, same as in the i2b2 Challenge, is micro-averaged F-

measure, i.e., a harmonic average of the micro-precision and micro-recall that are calculated with 

the formula below, where TPi, FPi, and  FNi are true positive, false positive, and false negative 

counts for the i
th
 category of relations,  respectively, where C  is the total number of positive catego-

ries. In the final evaluation, C equals 8, which considers all three types of positive categories to-

gether, as listed in Table I or II.  
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7 RESULTS AND DISCUSSION 

We present in this section experimental results to show how our model incorporates the various 

sources of knowledge of different nature, to achieve the state-of-the-art performance. We also pre-

sent the performance achievable when the model encounters noisy input, a typical real situation in 

which medical concepts are automatically identified by also a state-of-the-art concept recognizer. In 

addition, a non-linear regression analysis is also conducted to help understand the usefulness of 

more annotated data (if consistently labeled according to the i2b2 training data) and the effective-

ness of our current use of the provided unlabeled data. 

7.1 Performance 

Our best system that applies the ME model in a simple semi-supervised set-up (as discussed above 

in Section 3.2) to leverage all knowledge (as discussed in Section 4), in both labeled and unlabeled 

data, achieves an overall 0.731 micro-averaged F-measure [5], which ranks as the second in the 

i2b2/VA-2010 Challenge. We note that this result has no statistically significant difference from 

that of the first-placed system, where both systems are statistically significantly better than all the 

rest 14 competing systems.
6
  

 

Table III. Micro-averaged recall, precision, and F-measure of our best model. 

 R P F 

Best model  .693 .773 .731 
 

  
6 In the i2b2-2010 competition, a participating team can submit up to three systems (the output of the systems), and the best performed 

one is selected as the final competing system to represent that team. 
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To explore the effectiveness of different knowledge sources in this decision-making process, Figure 

2 illustrates the contributions of different feature sources on coarse category level, i.e., word/phrase 

statistics (W), domain semantics (D), and syntax (S), and their combinations. From the figure, we 

can first see that when considered individually, W is the best individual feature category, meaning 

that a baseline model built on superficial lexical-level features can have already achieved a very 

strong performance. 

Figure 2. Contributions of different types of knowledge: word/phrase statis-

tics (W), domain semantics (D), syntax (S), and their combinations.  

 

 

Even with this strong baseline, extra sentential syntax and domain semantics can still significantly 

improve performance on the test set, as shown in Figure 2, from the F-measure of 0.715 (W) to 

0.720 (SW) and 0.721 (DW), respectively. The domain semantic knowledge complements all other 

features very well: although individually the feature set D (0.485) is much less effective than syntax 

S (0.661), it can improve the performance of word/concept features (W) more that the syntax can. 

This actually confirms the benefit of  efforts on constructing those domain resources such as UMLS. 
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We will present more details on this below. In total, integrating all knowledge (DSW) together 

pushes the best performance to 0.727, where removing any of them would result in a decrease of 

performance significantly; e.g., removing S, D, or W from DSW reduces the performance from 

0.727 to 0.721, 0.720, or 0.670 respectively. This, again, indicates the complementary property of 

these sources of knowledge in this decision-making process. We note also that, as discussed earlier, 

the syntactic features used here were automatically extracted from the dependency trees generated 

by an automatic parser, meaning that the improvement achieved here has already considered parsing 

errors (McClosky et al., [13] reported ~84% F-measure), though we have no evaluation data here to 

measure the parsing performance separately. 

Table IV. Observation on feature effectiveness by subcategories. 

 

 R P F 

Word/concept statistics (W) .680 .753 .715 

 Basic .671 .731 .700 

Rich .578 .620 .598 

Domain semantics (D) .543 .439 .485 

 Manual .530 .423 .470 

  UMLS/MetaMap .434 .489 .460 

  Word/Phrase Clusters .230 .622 .336 

 Automatic PMI .370 .516 .431 

Syntax (S) .633 .693 .661 

 Dependency structures .609 .621 .615 

 cTAKES .586 .658 .620 
 

 

Table IV provides details of observation on feature effectiveness by subcategories, corresponding to 

the discussion in Section 4. We first see that intensively exploring word/concept statistics (i.e.,  the 

rich subcategories) is beneficial, it can clearly improve the performance of the Basic performance 

from 0.700 to 0.715; note that all features in this category are relatively computationally inexpen-

sive (e.g., compared with dependency features in the Syntax category), they bear great importance 

in real system construction, while adding more advanced features can further statistically signifi-
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cantly improve the performance. In the Domain semantics (D) category, manually-constructed do-

main knowledge is more effective than that from the automatic PMI, where the major contribution 

is from UMLS, confirming the value of putting effort on constructing such human-authored 

knowledge. We can also observe the unbalanced precision and recall of  the Word/Phrase Clusters 

features, suggesting the coverage problem of such kind of smoothing features. We expect details on 

such a level would not only help understand effectively these knowledge sources, e.g., those from 

knowledge-based construction and automatically acquired, but also be helpful if the models dis-

cussed in this paper need to be constructed or compared with. 

 

The results in both Figure 2 and Table IV correspond to the supervised ME models trained on man-

ually annotated data. As discussed in Section 4.4, we also applied the model in a semi-supervised 

setting to leverage unlabelled data, which further improved the best performance in Figure 2, i.e.., 

the 0.727 of DSW, to our best result presented in Table III, i.e., 0.731, where an improvement of 0.5 

absolute F-measure is observed. Note that although we extracted all types of features from the unla-

belled data in the same way as from training data (but with bootstrapping from the unlabelled data), 

due to the potential noise introduced by automatic concept recognizer, we avoided including the 

knowledge learned from the unlabelled data in our analysis of feature effectiveness above.  

 

To provide an additional intuitive view, Figure 3 represents training and test data in a reduced-

dimensionality space, where the DSW feature space is reduced to three dimensions with principal 

component analysis (PCA). Specifically, subfigures (1)-(3) represent test data for (1) treatment-

problem relations, (2) test-problem relations, and (3) problem-problem relation, respectively. Sub-

figure (4) also demonstrates test-problem relations in the training set, showing a similar distribution 

to that in (2). In all subfigures, blue dots represent negative examples, where no relations existing 

between two candidate concepts; red dots represent the largest positive relations, i.e, TrAP, TeRP, 
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and PIP, respectively (see Table II for details), while nodes in other colors are data points of other 

positive relations. We can roughly see that in each of these figures, the positive and negative cate-

gories are rather discernable from each other even in such a reduced space,  in which treatment-

problem and test-problem relations are more similar to each other in their distributions, while prob-

lem-problem relations are more different.  

 

Figure 3. Training and test data visualized in a dimensionality reduced space acquired with 

principal component analysis. Blue dots represent negative examples, where no relations 

exist between two candidate concepts; red dots represent the largest positive relations, i.e., 

TrAP, TeRP, and PIP, in each type of relation (see Table II for details), while green dots are 

data points of other positive relations.  

  
(1) treatment-problem relations in test set (2) test-problem relations in test set 

  
(3) problem-problem relation in test set (4) test-problem relations in training set 

 

 

 

7.2 Exploring the problem in a more realistic setup 

Following the i2b2 evaluation guideline, the results presented above are all based on ideal concepts: 

the medical concepts in the test set are all manually annotated. This set-up helps understand the ide-
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al state-of-the-art relation-detection performance, without subjecting to noise from concept recogni-

tion. However, in a more realistic scenario, a natural question is then: how will the model perform 

without assuming the concepts are given, but automatically recognized by a real system? To further 

investigate this problem, we first applied an also top-ranked concept recognizer (see Section 3.1 for 

more details) to annotate the test set and then use our best model (that in Table III) to identify rela-

tions. The results are presented in Table V. 

 

Table V. Performance of relation detection on the test set with concepts 

manually annotated or automatically recognized. 
 

Test set R P F 

  Concepts manually annotated .693 .773 .731 

  Concepts automatically recognized .488 .589 .534 

 

The first row is copied from Table III for comparison, showing the performance of our best model 

on idea input, while the second row contains the results of relation detection on the noisy test set 

with automatically recognized concepts. The performance drops dramatically from an F-measure of 

0.731 to that of 0.534, where the corresponding F-measure of the concept recognition used in the 

latter is 0.852. Our further manual analysis attributes this significant drop majorly to the stringent 

evaluation metric used. All errors in concept recognition, even a small shifting of a concept bounda-

ry from the corresponding gold-standard, where the concept label itself is correct, will result in er-

rors in relation detection, without an exception. On the other hand, errors of mislabeling a concept, 

misrecognizing its boundaries, or errors on both should have different effects on human being's per-

ception and also on other applications, let alone with the more subtle situation in which boundary 

errors themselves could vary in their distances (i.e., word numbers) from the gold boundaries. The 

current evaluation metric, however, treats all the same.  
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We believe this should receive more attentions from the community for both pragmatic and theoret-

ic consideration, particularly if considering that the impact could be much more prominent in 

healthcare-related domains, e.g., here clinical and biomedical, where concepts are often much long-

er, e.g., than general named entities (NE) in newswire data that have received the most intensive 

attention in NLP research.  

7.3 Effects and sufficiency of human labeling  

In addition to these automatic approaches, we are also concerned here to understand the effects and 

sufficiency of human labeling efforts in improving the performance, by analyzing the effect of 

training data sizes on our current performance, the potential benefit of acquiring more labeled data, 

and the effectiveness of our utilizing the provided unlabelled data in our models (e.g., as in Section 

4.3).  We study these problems with our ideal i2b2 models (those in Section 6.1), avoiding the im-

pact of the noise introduced from concept recognition. 

 

The left part of Figure 4 (the red squares) helps understand the first question above, i.e., the effects 

and sufficiency of human labeling efforts in improving the performance. These red squares are ac-

quired by regarding the size of the official i2b2-provided training data as the unit size 1, from which 

we randomly sampled subsets of different sizes, i.e., 0.1, 0.2, ..., 0.9, and trained models with all 

DSW features discussed.  Specifically, for each data size, we trained 100 models (in total 900 mod-

els) by sampling with replacement, and then calculated the average of the 100 micro-averaged F-

measures on each size to get the corresponding red square in the figure. We can see that even when 

only half of the provided training data are used (without using the unlabelled data yet), our model 

achieves a 0.715 micro-averaged F-measure, already ranking at the 2
nd

 place among the i2b2 sub-

missions.   
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Figure 4. A logarithm-regression analysis on model performances under different 

sizes of labeled and unlabeled data. The ten red squares are micro-averaged F-

measures of the models trained on randomly sampled subsets of the original training 

data. The green dot is the projected F-measure, modeling the performance if the 

i2b2-provided unlabeled data were all manually annotated. The red diamond is the F-

measure of our best model, which uses these provided unlabeled data through boot-

strapping. 

 
 

 

We applied a logarithm regression to fit the F-measures at these different training-data sizes (the ten 

red squares), computed with the Levenberg-Marquardt algorithm with the least-square-error criteri-

on. The acquired blue curve suggests that exerting efforts on annotating more data would likely to 

further improve the performance, if the annotation is consistent with the training set. For example, if 

all the i2b2-provided unlabeled data (as discussed in Section 4.4) were annotated and added to the 

training set, the projected F-measure on the curve would be 0.751 (the green dot), which is 2.4 

points higher than that trained with current training set (0.727 at the unit size 1), or 2.0 points higher 

than the result achieved by utilizing these unlabeled data without human labeling, i.e., through ap-

plying a bootstrapping process discussed in Section 4.4, where a 0.731 F-measure is observed (the 

red diamond in the figure). 
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7.4 Performance of the composite-kernel-based model 

We used SVMLight [28] and the tree kernel toolkit [29] in our experiments and used one-vs-all 

strategy for the multiclass classification problem. Table VI  shows the performance of the compo-

site-kernel-based model discussed in Section 5, which achieves a micro f-measure score of 0.742, a 

performance statistically significantly better than that of our top-ranked model (0.731) with 95% 

confidence. Within the kernel framework, if we remove the convolution tree kernel but keep all 

others, the best result we observed is 0.733, showing the marginal (non-statistically significant) dif-

ference between the wrapping kernels and the original maximal-entropy framework (0.731). More 

importantly, the result clearly shows the effectiveness of the convolution tree kernel, which allows 

us to conclude that complex syntactic structures can further improve the modeling quality for this 

domain-specific semantic task, even when abundant domain semantics has already been carefully 

utilized. The f-measure of 0.742 is also the best score reported, according to our knowledge, on the 

i2b2-2010 relation task.  

Table VI. Performance of relation detection on the test set with compo-

site kernels. 
 

 R P F 

Composite-kernel-based model .726 .755 .742 

Among several choices, the subtrees we found  to be the most effective in calculating convolution 

kernel are the path-enclosed trees, which outperform all other subtree types, which agrees with the 

observation in open-domain data [22]. We also incorporated context-sensitive constituent parse 

trees [23] but did not observe further improvement. This may indicate that the contextual semantics 

that we have extracted in Section 4 have captured such information well enough, e.g., the surface, 

syntactic, and semantic features associated with the three words before the first (left) concept and 

the three after the second (right) concept for a given relation instance. 
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8 CONCLUSIONS AND FUTURE WORK 

This paper addresses the problem of identifying semantic relations mentioned between medical 

concepts in real clinical texts. We introduce a machine-learning model that achieves a top-ranked 

performance in an international competition. We first explore experimental evidences to help con-

struct a comprehensive understanding of the roles of a wide variety of knowledge sources in this 

automatic decision-making process, given the fact that the difference between state-of-the-art classi-

fiers in this task is less discernable. We show that explicit domain semantics acquired from manual-

ly authored knowledge bases, e.g., UMLS, together with that implicitly embedded among in-

domain text, e.g., MEDLINE, provide with complementary knowledge in improving the model per-

formance, although this category of knowledge by itself appear to be less effective, e.g., when com-

pared with syntactic features and superficial statistics directly learned from the training data. Deep 

syntactic knowledge, even when computed automatically and hence containing noise themselves , 

i.e., errors from a parser, can still render additional benefit to improve the models. We provide 

comprehensive introduction and analysis on these knowledge sources, which all together raises per-

formance to a 0.731 micro-averaged F-measure.  

 

When we situate the task in a more realistic setup in which concepts are generated by an concept 

detector, the performance of relation extraction drops dramatically, which we attribute to the strin-

gent evaluation metric used. We believe this problem should receive more attentions from the 

community, for both pragmatic and theoretic concerns, particularly if considering that the impact 

could be much more prominent in healthcare-related domains, e.g., here clinical and biomedical, 

where concepts are often long, than for general named entities (NE) in newswire data which have 

received major attention in NLP research. Moreover, we found we still lack training data to obtain a 

better model: a further non-linear regression analysis suggests the potential benefit of the availabil-
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ity of more annotated data, while our current use of the provided unannotated clinical data in an 

semi-supervised way has already yielded a modest improvement.   

 

We reformulate our models into a composite-kernel framework and achieve a f-measure of 0.742, a 

performance statistically significantly better than that of our previous top-ranked model (0.731). 

The score is also the best-ever result, according to our knowledge, on the same dataset.  The results 

allow us to conclude that complex syntactic structures can further improve the modeling quality for 

this semantic task even when abundant domain semantics has already been carefully utilized. 

 

As our immediate future work, we would further explore the joint inference problem of relation de-

tection and concept recognition, as well as the associated evaluation problem discussed in Section 

6.2. In addition to the evaluation problem mentioned above, the connection between concept recog-

nition and relation detection could deserve a further study―instead of decoupling them into two 

independent tasks, joint inference would be an interesting problem, to utilize constraints between 

these two tasks so as to find better results for each of them. Recent literature on open-domain news 

data has actually already included interesting efforts along this direction [11][16], although all this 

work has assumed the availability of named entity boundaries (but not the labels of entities)—i.e., 

the positions where entities appear are assumed to be known—to simplify the inference as a joint 

labeling problem. Recent success of Lagrangian relaxation based methods in many NLP problems, 

including their special form, dual decomposition, could provide another way to help view our prob-

lem here, e.g., to drop the assumption of boundaries and add the constraints between concept recog-

nition and relation detection in a soft way, i.e., penalty for unsatisfaction is not infinite.  
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