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Abstract. This paper deals with categorization tasks where categories
are partially ordered to form a hierarchy. First, it introduces the notion of
consistent classification which takes into account the semantics of a class
hierarchy. Then, it presents a novel global hierarchical approach that
produces consistent classification. This algorithm with AdaBoost as the
underlying learning procedure significantly outperforms the correspond-
ing “flat” approach, i.e. the approach that does not take into account
the hierarchical information. In addition, the proposed algorithm sur-
passes the hierarchical local top-down approach on many synthetic and
real tasks. For evaluation purposes, we use a novel hierarchical evalua-
tion measure that has some attractive properties: it is simple, requires
no parameter tuning, gives credit to partially correct classification and
discriminates errors by both distance and depth in a class hierarchy.

1 Introduction

Hierarchical categorization deals with categorization problems where categories
(aka classes) are organized in hierarchies. More formally, categories are partially
ordered, usually from more generic to more specific. The hierarchical way of or-
ganization of entities or notions is very helpful for humans to retain, find and
analyze things. Therefore, it is not surprising that people maintain large collec-
tions of articles, images or emails in hierarchies of topics or systematize a large
body of biological knowledge in hierarchies of concepts (aka ontologies). Such
organization allows to focus on a specific level of details ignoring specialization
of lower levels and generalization of upper levels.

Hierarchical categorization is an automatic approach of placing new items into
a collection with a predefined hierarchical structure. In this work we focus mainly
on one application area, hierarchical text categorization. However, the proposed
techniques can be applied to automatic hierarchical categorization of entities of
any kind. Hierarchical text categorization has many important real-world appli-
cations. In fact, most of the large textual collections are organized hierarchically,
e.g. web repositories, digital libraries, patent libraries, email folders, etc. Dealing

L. Lamontagne and M. Marchand (Eds.): Canadian AI 2006, LNAI 4013, pp. 397–408, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



398 S. Kiritchenko et al.

with hierarchies effectively and efficiently is becoming a necessity in many text
categorization applications.

Theoretically, hierarchical categorization can be easily substituted with “flat”
categorization if we ignore the class structure and replace a hierarchy with a set
of categories. However, by doing this we would disregard relevant information.
For most text categorization tasks the category hierarchies have been carefully
composed by humans and represent our knowledge on the subject matter. This
additional information can boost the performance of a classification system if we
find the way to incorporate it in the learning process.

In this work we explore two main aspects of hierarchical text categorization:
learning algorithms and performance evaluation. First, we introduce the no-
tion of consistent hierarchical classification that makes classification results even
more comprehensible. In consistent classification any category label is assigned
together with all its ancestor labels to any instance. Among the previously intro-
duced hierarchical learning algorithms, only a local top-down approach produces
consistent classification. We propose a new global hierarchical approach that is
aimed to perform consistent classification. This is a general framework of con-
verting a conventional “flat” learning algorithm into a hierarchical one. In our
experiments we used AdaBoost as the underlying learning approach. However,
any conventional method capable of performing multi-label classification can be
used within this framework. Our experiments on real and synthetic data indicate
that the proposed approach significantly outperforms the corresponding “flat”
approach as well as the local top-down method. In addition, we design a new
hierarchical evaluation measure. We argue that conventional “flat” measures as
well as the existing hierarchical measures cannot discriminate between different
types of errors a hierarchical classification system can make. Therefore, we pro-
pose a new hierarchical evaluation measure that is simple and straight-forward
to compute, gives credit to partially correct classification and has much discrim-
inating power.

2 Related Work

Until the mid-1990s machine learning researchers mostly ignored the hierarchical
category structure present in some text categorization applications by turning a
hierarchy into a flat set of categories. In 1997 Koller and Sahami carried out the
first proper study of a hierarchical text categorization problem [1]. They pre-
sented a divide-and-conquer (aka local) principle, the most intuitive for hierar-
chical text categorization. After this work a number of approaches to hierarchical
text categorization have been proposed [2, 3, 4].

Hierarchical categorization methods can be divided in two types [3]: global
(or big-bang) and local (or top-down level-based). In a global approach only one
classifier is built to discriminate all categories in a hierarchy simultaneously.
It is similar to the “flat” approach except it somehow takes into account the
relationships between the categories in a hierarchy. Hierarchical modifications to
association rule learning [5], decision tree learning [6], SVM [7] and probabilistic
learning [8] are considered global approaches.
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A local approach builds separate classifiers for each internal node of a hier-
archy. A local classifier usually proceeds in a top-down fashion first picking the
most relevant categories of the top level and then recursively making the choice
among the low-level categories, children of the relevant top-level categories. The
local approach has been widely used with different learning algorithms: proba-
bilistic learning [1], neural networks [4], and SVM [2].

Unlike previous work, we focus on hierarchical learning methods that build
classifiers consistent with a given class hierarchy. The local approach naturally
produces consistent labeling since we classify an instance into a category only if
we have already classified it into the parent category in the previous classification
step. However, a local classifier works only with limited (local) information at
each classification node. Moreover, it is highly sensitive to the decisions made
at the top of a hierarchy: once an error is committed near the top, it cannot
be recovered regardless of how good the classifiers are at lower levels. A global
approach, on the other hand, uses all available information at the same time and,
therefore, has a better chance for correct classification. Finally, in many real-life
situations, one classifier produced by a global approach is easier to maintain and
to interpret by end users than a bunch of classifiers built by a local method. For
these reasons, we propose a new global approach specifically designed to produce
consistent classification.

3 Hierarchical Categorization Task

In this section we formally define a hierarchical classification task. We start with
a definition for partial ordering, a relation present in a hierarchical structure.

Definition 1 (Poset). A finite partially ordered set (poset) is a structure H =
〈C, ≤〉, where C is a finite set and ≤ ⊆ C × C is a reflexive, anti-symmetric,
transitive binary relation on C.

Given a relation ≤, we define a relation < as q < p if q ≤ p and q �= p. For
any two categories p, q ∈ C such that q < p and �∃r ∈ C : q < r < p, we call
p a parent category of q and q a child category of p. For any category p ∈ C,
its ancestor set is Ancestors(p) = {q ∈ C : q ≥ p}, and its offspring set is
Offspring(p) = {q ∈ C : q ≤ p} (note that both sets include category p). We
call categories that have no children leaves and categories that have both parents
and children intermediate (or internal) classes.

Definition 2 (Hierarchical Categorization). Hierarchical categorization
task is the task of assigning a Boolean value to each pair 〈dj , ci〉 ∈ D × C,
where D is a domain of instances and C =

{
c1, . . . , c|C|

}
is a set of predefined

categories with a given poset structure H = 〈C, ≤〉.

In a hierarchical categorization task the category hierarchy H = 〈C, ≤〉 describes
the relations between the categories and comes from the application task at hand.
The hierarchy is assumed to represent the domain knowledge and is not modified
in any way.
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In general, a hierarchical categorization task is multi-label which means that
an instance can be assigned to any number of categories from 0 to |C|.

For any poset H = 〈C, ≤〉 that represents a hierarchy we assume the existence
of the root (or top) class Root(H) that is the ancestor of all other categories in
the hierarchy: {Root(H)} =

⋂
p∈C Ancestors(p). The root class itself has no

parents.
Generally, category hierarchies are of a broader-narrower type where a subcat-

egory represents a subtype or a part of the parent category. Category hierarchies
are usually represented in the form of a directed acyclic graph (DAG). DAGs
are more general than trees in that nodes in a DAG can have multiple parents.

4 Hierarchical Consistency

The notion of hierarchical consistency is intended to make the results of hierar-
chical classification more comprehensible for users. Since hierarchies are mostly
designed in the way that lower level categories are specialization of higher level
categories, which is represented by transitive relations, such as “is-a” and “part-
of”, we can assume that an instance belonging to a category also belongs to all
ancestor nodes of that category. Therefore, we would like a classifier explicitly
assign all the relevant labels, including the ancestor labels, to a given instance.
In this way, the assigned labels would clearly indicate the position of an instance
in a category hierarchy.

Definition 3 (Hierarchical Consistency). A label set Ci ⊆ C assigned to an
instance di ∈ D is called consistent with a given hierarchy if Ci includes complete
ancestor sets for every label ck ∈ Ci, i.e. if ck ∈ Ci and cj ∈ Ancestors(ck), then
cj ∈ Ci.

We assume that every instance belongs to the root of a class hierarchy; therefore,
from now on we will always exclude the root node from any ancestor set since
including it does not provide any additional information on the instance.

Definition 4 (Hierarchical Consistency Requirement). Any label assign-
ments produced by a hierarchical classification system on a given hierarchical
categorization task should be consistent with a corresponding class hierarchy.

5 Hierarchical Global Learning Algorithm

We propose a new hierarchical global approach to learn a classifier that produces
consistent labeling on unseen instances. The method is simple and effective and
can be applied to any categorization task with a class hierarchy represented as a
DAG. The main idea of the algorithm is to transform an initial (possibly single-
label) task into a multi-label task by expanding the label set of each training
example with the corresponding ancestor labels or, in other words, by expand-
ing intermediate classes with examples from their offspring nodes. As a result,
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in the modified dataset each intermediate category would contain training ex-
amples originally assigned to this category and examples originally assigned to
descendant nodes of the category in a hierarchical graph. This data modifica-
tion forces a learning algorithm to focus on high level categories by providing a
large number of training examples for those categories. The correct classification
of unseen instances into high level categories is very important in hierarchical
categorization since high level categories define the most general topics for doc-
uments. For example, if we classify a news article about an art exhibition into
category “sports” (if “arts” and “sports” are among the top level categories), it
would be completely wrong. On the other hand, a mistake made for lower levels,
e.g. classification of a document on minor hockey into category “professional
hockey”, would not be so drastic.

We expect the presented strategy to be successful in the hierarchical settings
because a hierarchical structure is typically designed to reflect the semantic close-
ness of categories. Therefore, we anticipate that related categories share some
attributes. In the text categorization context, that means shared vocabulary. For
example, categories “hockey” and “American football” have their own specific
vocabulary, such as “goalkeeper” or “NHL” for “hockey” and “Super Bowl” or
“touchdown” for “football”. At the same time, these two categories likely share
some common terms, such as “team” or “game”, that also appear in their par-
ent category “sports”. Our method allows a learning algorithm to explore such
common attributes in order to improve classification, especially for high level
categories.

Overall, the algorithm consists of three steps:

1. Transformation of training data making them consistent with a given class
hierarchy;

2. Application of a regular learning algorithm on a multi-label dataset;
3. Re-labeling of inconsistently classified test instances.

On the first step, we replace each example (di, Ci), di ∈ D, Ci ⊆ C, with
(di, Ĉi), where Ĉi = {

⋃
ck∈Ci

Ancestors(ck)}. Then, we apply a regular learning
algorithm, e.g. AdaBoost, on the modified multi-label dataset. Since we train a
classifier on the consistent data, we expect that most test instances would be
classified consistently as well. However, it is not guaranteed. Some of the test
instances can end up with inconsistent labels. This happens if the confidence
score of some class A passes a given threshold while the confidence score of one
of its ancestor classes does not. For such instances we need to do the third post-
processing step. At this step we re-label the instances in a consistent manner
by considering the confidence in the predictions for class A and all its ancestor
classes. One possible procedure here is to calculate the average of these confi-
dences. If the average is greater than a threshold, we label the instance with
class A and all its ancestor classes; if the average is lower than the threshold, we
do not assign class A to the instance. This procedure acts as a kind of weighted
voting. Each ancestor class votes with its own confidence score. Large positive
scores would indicate some certainty in the assigning the class, while negative
values would vote against this class assignment.
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5.1 Hierarchical AdaBoost

In this work we use the new hierarchical global approach with a state-of-the-art
learning algorithm AdaBoost.MH [9],1 a boosting method designed for multi-
class multi-label problems.

AdaBoost.MH works iteratively at each iteration t learning a new “weak”
hypothesis ht on a current distribution Pt over the training examples. After
each step, the distribution Pt is modified to increase the weight of the incorrectly
classified training examples and decrease the weight of the correctly classified
examples. As a result, on the next round t + 1 a “weak” learner ht+1 is forced
to focus on examples that are hardest to classify. After a specified number of
iterations T , the learning process is stopped, and a weighted voting of the “weak”
predictions is used as a final hypothesis: H(d, �) =

∑T
t=1 αtht(d, �), d ∈ D, � ∈ C,

where D is a domain of documents and C is a set of categories. In other words,
for each test instance and each class the final hypothesis outputs a real value,
called a confidence score. For single-label classification, the classification decision
is simply the top-ranked class, the class with the highest confidence score. In a
multi-label case, however, we have to select a threshold to cut off class labels
for a given instance. One such possible threshold is zero: any positive confidence
score indicates that the class should be assigned to an instance, any negative
score indicates that the class should not be assigned to an instance. However, we
can optimize this threshold value with a simple procedure defined as follows. We
train AdaBoost.MH on an available training set S, get the confidence predictions
on the same set S, and sort the confidence scores in the decreasing order (t1,
t2, . . ., tn). Then, we try the confidence scores one by one as possible thresholds
and find tk that results in the best F-measure on the training set S. The final
threshold to use on test data is calculated as tk+tk+1

2 . This threshold smoothing
helps us avoid overfitting when the boosting progresses and gains high confidence
in prediction.

6 Hierarchical Evaluation Measure

Most researchers evaluate hierarchical classification systems based on standard
“flat” measures: accuracy/error and precision/recall. However, these measures
are not suitable for hierarchical categorization since they do not differentiate
among different kinds of misclassification errors. Intuitively, misclassification to
a sibling or a parent node of the correct category is much better than misclassifi-
cation to a distant node. To overcome this problem, a hierarchical measure based
on the notion of distance has been proposed. The distance between a correct and
assigned category, distance(x, y), is the length of the (unique) undirected path
from node x to node y in a hierarchical tree. This distance measure gives different

1 In our experiments we used software BoosTexter (http://www.cs.princeton.edu/
∼schapire/BoosTexter/), an implementation of AdaBoost.MH specifically designed
for text categorization. BoosTexter uses decision stumps (one-level decision trees) as
its “weak” learners.
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Fig. 1. A sample DAG class hierarchy. The solid ellipse G represents the real category
of an instance.

penalties to misclassification into a neighboring or a distant category. However,
it has some drawbacks. First, it is not easily extendable to DAG hierarchies
(where multiple paths between two categories can exist) and multi-label tasks.
Second, it does not change with depth. Misclassification into a sibling category
of a top level node and misclassification into a sibling of a node 10-level deep
are considered the same type of error (distance of 2). However, an error at the
10th level seems a lot less harmful than an error at the top level.

To express the desired properties of a hierarchical evaluation measure, we
formulate the following requirements:

1. The measure gives credit to partially correct classification, e.g. misclassifi-
cation into node I when the correct category is G (Figure 1) should be penalized
less than misclassification into node D since I is in the same subgraph as G and
D is not.

2. The measure punishes distant errors more heavily:
a) the measure gives higher evaluation for correctly classifying one level down

comparing to staying at the parent node, e.g. classification into node E is better
than classification into its parent C since E is closer to the correct category G;

b) the measure gives lower evaluation for incorrectly classifying one level
down comparing to staying at the parent node, e.g. classification into node F is
worse than classification into its parent C since F is farther away from G.

3. The measure punishes errors at higher levels of a hierarchy more heavily,
e.g. misclassification into node I when the correct category is its sibling G is
less severe than misclassification into node C when the correct category is its
sibling A.

Formally, if we denote HM(c1|c2) the hierarchical evaluation of classifying an
instance d ∈ D into class c1 ∈ C when the correct class is c2 ∈ C in a given tree
hierarchy H = 〈C, ≤〉, then

1. for any instance (d, c0) ∈ D ×C, if Ancestors(c1)∩Ancestors(c0) �= � and
Ancestors(c2) ∩ Ancestors(c0) = �, then HM(c1|c0) > HM(c2|c0);

2. a) for any instance (d, c0) ∈ D × C, if c1 = Parent(c2) and
distance(c1, c0) > distance(c2, c0), then HM(c1|c0) < HM(c2|c0);

b) for any instance (d, c0) ∈ D × C, if c1 = Parent(c2) and
distance(c1, c0) < distance(c2, c0), then HM(c1|c0) > HM(c2|c0);

3. for any instances (d1, c1) ∈ D×C and (d2, c2) ∈ D×C, if distance(c1, c
′
1) =

distance(c2, c
′
2), level(c1) = level(c2) + Δ, level(c′1) = level(c′2) + Δ, Δ > 0,
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c1 �= c′1, c2 �= c′2, and level(x) is the length of the unique path from the root to
node x, then HM(c′1|c1) > HM(c′2|c2).

Clearly, conventional “flat” measures do not satisfy any of the three require-
ments. Distance-based hierarchical measures satisfy the second principle, but
not always the first and not the third. Thus, we propose a new hierarchical eval-
uation measure that satisfies all three principles. The new measure is the pair
precision and recall with the following addition: each example belongs not only
to its class, but also to all ancestors of the class in a hierarchical graph, except
the root (we exclude the root of a class hierarchy, since all examples belong to
the root by default). We call the new measures hP (hierarchical precision) and
hR (hierarchical recall).

Formally, in the multi-label settings, for any instance (di, Ci), d ∈ D, Ci ⊆ C
classified into subset C′

i ⊆ C we extend sets Ci and C′
i with the corresponding

ancestor labels: Ĉi = {
⋃

ck∈Ci
Ancestors(ck)}, Ĉ′

i = {
⋃

cl∈C′
i
Ancestors(cl)}.

Then, we calculate (micro-averaged) hP and hR as follows:

hP =
�

i |Ĉi∩Ĉ′
i|�

i |Ĉ′
i|

hR =
�

i |Ĉi∩Ĉ′
i|�

i |Ĉi|

For example, suppose an instance is classified into class F while it really
belongs to class G (Figure 1). To calculate our hierarchical measure, we extend
the set of real classes Ci = {G} with all ancestors of class G: Ĉi = {B, C, E, G}.
We also extend the set of predicted classes C′

i = {F} with all ancestors of class F :
Ĉ′

i = {C, F}. So, class C is the only correctly assigned label from the extended
set: |Ĉi ∩ Ĉ′

i| = 1. There are |Ĉ′
i| = 2 assigned labels and |Ĉi| = 4 real classes.

Therefore, we get hP = |Ĉi∩Ĉ′
i|

|Ĉ′
i|

= 1
2 and hR = |Ĉi∩Ĉ′

i|
|Ĉi| = 1

4 .

Following the common practice in conventional text categorization, we can
combine the two values hP and hR into one hF-measure:

hFβ =
(β2 + 1) · hP · hR

(β2 · hP + hR)
, β ∈ [0, +∞)

In our experiments we used β = 1, giving precision and recall equal weights.

Theorem 1. The new hierarchical measure hF satisfies all three requirements
for hierarchical evaluation measures listed above2.

The new measure is easy to compute: it is based solely on a given hierarchy, so
no parameter tuning is required. It is formulated for a general case of multi-label
classification with a DAG class hierarchy. Furthermore, we have experimentally
proved (results not shown here) that the new measure is superior to standard
“flat” measures in terms of statistical consistency and discriminancy - the two
criteria Huang and Ling propose to compare classification performance measures
[10]. The consistency property means that if we have two classifiers A and B

2 The proof of the theorem is straight-forward and is available at http://www.
site.uottawa.ca/∼svkir/papers/thesis.zip.
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and A is more accurate in terms of non-hierarchical measures, it is most likely
that our hierarchical measure agrees, and A is better than B in terms of hF
as well. The discriminancy property implies that if non-hierarchical measures
cannot tell apart the performances of classifiers A and B, our measure is more
discriminating and prefers one over the other in most situations.

7 Experiments

We report the results of the experiments on real and synthetic data to com-
pare the proposed hierarchical global approach with “flat” and hierarchical local
methods.

7.1 Datasets

Synthetic. We make use of synthetic data to be able to control the size of a
class hierarchy and the presence or absence of attribute inheritance between an
ancestor class and its descendant classes. The data are designed as follows. For a
specified number of levels and for a specified out-degree, i.e. the number of chil-
dren classes for each intermediate category, we build a balanced tree hierarchy.
For each class, including the internal ones, we allocate 3 binary attributes and
generate 10 training and 5 test instances per class. Each instance is assigned to
exactly one class. The instances are generated randomly according to the fol-
lowing distribution: attributes associated with the class of an instance are set to
1 with 70% probability, all other attributes are set to 1 with 20% probability.
We test synthetic data for two extreme situations. The first one is when each
class inherits the distribution of attributes from its parent class on top of its
own distribution. In other words, the attributes for a class and all its ancestor
classes have the high probability (70%) of 1; all other attributes have the small
probability (20%). The second situation is when there is no inheritance of at-
tribute distribution: only the attributes associated with the class of an instance
have 70% probability of 1, all others have 20% probability. We ran experiments
for hierarchies with the number of levels and out-degree each ranging from 2 to
5. Experiments are repeated 100 times for every configuration.

20 newsgroups. This is a widely used dataset of Usenet postings. Following
[8], we use a two-level tree hierarchy grouping 15 categories in 5 parent nodes.

RCV1 V2. This is a cleaned version of a new benchmark collection of Reuters
news articles. The dataset consists of over 800,000 documents labeled with 103
topics comprising a 4-level hierarchy. Due to the large size of the corpus, we are
able to split the data in training and testing subsets in a time-sensitive manner.
Articles from 10 full months (September, 1996 - June, 1997) form 10 splits: the
first half of a month is used for training, while the second half is used for testing.

Medline. We have also composed 3 large-scale biological datasets for a task of
predicting gene functions from biomedical literature. We chose Gene Ontology
(GO) to be our category hierarchy. GO provides a hierarchically organized set
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of all possible functions that a gene can have in a living organism. It consists
of 3 parts: biological process (P), molecular function (F), and cellular compo-
nent (C). Each part can be seen as an independent DAG hierarchy. We use the
Saccharomyces Genome Database (SGD) to obtain manually assigned pairs of a
biomedical article describing a yeast gene and the gene’s function in GO terms.
Overall, we collect 3 datasets, one for each GO hierarchy.

For real datasets, the conventional “bag-of-words” representation is used. All
documents are pre-processed: stop words are removed, remaining words are
stemmed and converted into binary attributes (a stem is present or not). A
simple feature selection technique based on document frequencies is applied. Ex-
periments are run on 10 random training/test splits (in proportion 2:1) for each
dataset, except for RCV1 V2 where splits are time-sensitive.

7.2 Comparison with “Flat” AdaBoost

The first set of experiments compares the performance of hierarchical global
AdaBoost with the corresponding “flat” approach, i.e. standard AdaBoost that
does not take into account any hierarchical information. Both algorithms are run
for equal numbers of iterations. The results are presented in Table 1 (columns 5,
7). Evidently, hierarchical AdaBoost significantly outperforms its “flat” version.
The differences are more pronounced for larger hierarchies with attribute distri-
bution inheritance as expected. The main difference between the two algorithms
is the initial re-labeling that makes training data consistent with a class hierar-
chy. In really hard tasks, e.g. on the biological data, where the number of classes
is very large and the number of training instances per class is very small, the
“flat” algorithm suffers a lot producing very poor results. At the same time, this
additional step allows the hierarchical method to assemble more training data
and learn more accurate classifiers for high level categories, which are favored
by the hierarchical evaluation measure.

7.3 Comparison with Hierarchical Local Approach

In the second set of experiments we compare the performances of the hierarchi-
cal global and hierarchical local approaches using AdaBoost as the underlying
learning algorithm. In the hierarchical local approach we run AdaBoost at each
internal node of a hierarchy for the same number of iterations as the global hier-
archical AdaBoost. Table 1 (columns 6, 7) shows the results. For most synthetic
and real tasks the global approach outperforms the local method. Both algo-
rithms take advantage of extended training data. However, the global approach
explores all the categories simultaneously (in a global fashion) assigning only
labels with high confidence scores. The local method, on the other hand, uses
only local information and, therefore, is forced to make classification decisions at
each internal node of a hierarchy, in general, pushing most instances deep down.
As a result, the global algorithm is always superior to the local one in terms of
precision while slightly yielding in recall. This reflects the conservative nature
of the global approach comparing to the local one. Therefore, it should be the
method of choice for tasks where precision is the key measure of success. We
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Table 1. Comparison of “flat”, hierarchical local, and hierarchical global AdaBoost.
Numbers in bold are significantly better with 99% confidence.

dataset # of depth out- boost. hF1 measure
categories degree iter. “flat” local global

newsgroups 20 2 3 500 75.51 80.01 79.26
RCV1 V2 103 4 4.68 500 73.10 74.03 75.86
medline P 1025 12 5.41 500 15.32 59.27 59.25
medline F 1078 10 10.29 500 8.78 43.36 38.17
medline C 331 8 6.45 500 42.81 72.07 73.35

synthetic 6 2 2 200 68.30 73.42 76.22
(with attr. 14 3 2 500 58.35 69.40 74.21
inheritance) 30 4 2 1000 44.90 68.18 73.22

62 5 2 2000 20.88 68.44 72.70
12 2 3 400 53.47 61.99 63.45
39 3 3 1000 29.51 58.81 60.69
120 4 3 3500 2.67 57.40 58.22
20 2 4 600 41.35 54.26 55.25
84 3 4 2500 6.98 50.66 50.70
30 2 5 900 29.99 47.26 47.87

synthetic 6 2 2 200 61.69 59.83 65.95
(no attr. 14 3 2 500 42.47 44.00 51.53
inheritance) 30 4 2 1000 24.49 33.44 40.18

62 5 2 2000 8.45 26.03 32.61
12 2 3 400 41.53 43.87 48.02
39 3 3 1000 14.50 26.33 29.97
120 4 3 3500 0.79 17.97 21.91
20 2 4 600 26.72 32.51 35.01
84 3 4 2500 2.46 17.96 19.70
30 2 5 900 17.14 26.04 27.12

can also notice that an increase in out-degree (k) adds a significant number of
categories (∼kdepth−1) to the global method while only slightly (linearly) com-
plicating the task for the local method. This results in the smaller advantage of
global AdaBoost on synthetic hierarchies with large out-degrees and its loss on
the highly “bushy” “medline F” data.

8 Conclusion

In this paper we study a hierarchical categorization problem. We show that hier-
archical classification should be consistent with a class hierarchy to fully repro-
duce the semantics of hierarchical relations. We discuss performance measures
for hierarchical classification and introduce natural, desired properties that these
measures ought to satisfy. We define a novel hierarchical evaluation measure and
show that, unlike the conventional “flat” as well as the existing hierarchical mea-
sures, the new measure satisfies the desired properties. It is also simple, requires
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no parameter tuning, and has much discriminating power. We present a novel
hierarchical global algorithm that produces consistent classification. This algo-
rithm with AdaBoost as the underlying learning procedure significantly outper-
forms the corresponding “flat” approach, i.e. the approach that does not take into
account the hierarchical information. The proposed algorithm also outperforms
the hierarchical local top-down approach on many synthetic and real tasks.

In future work, we plan to perform similar experiments with other
multi-label classification algorithms as underlying learning components. Un-
like AdaBoost.MH, some algorithms may be found behaving consistently in the
hierarchical framework even without the post-processing step.
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