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Abstract. We propose a novel solution to the email classification problem: the
integration of temporal information with the traditional content-based classification
approaches. We discover temporal relations in an email sequence in the form of
temporal sequential patterns and embed the discovered information into content-
based learning methods. The new heterogeneous classification system shows a good
performance reducing the classification error by up to 22%.

1 Introduction

As estimated by Ferris Research [5], spam accounts for 15% to 20% of in-
bound email at U.S.-based corporate organizations. Half of users receive 10
or more spam messages per day while some of them can get up to several
hundreds unsolicited emails. Spam is not only distractive for end users, it
also costs corporations a great deal of money. However, spam is not the only
problem with emails. The overwhelming amount of electronic correspondence
has become very difficult to manage for many users. One could benefit from
a personal email managing system that filters unsolicited messages, forwards,
deletes, or saves messages into relevant folders, prioritizes incoming messages
and forwards the urgent ones to mobile devices. At the company level, an au-
tomatic assistant that could forward messages to appropriate staff members
or even automatically respond to general inquiries would be a considerable
advantage. At the same time, the automatic systems have to make decisions
very accurately without active interference from the user.

In this work we propose a novel solution to the email classification prob-
lem: incorporating temporal information in the traditional classification ap-
proaches. A lot of research has been recently carried out on email classification
proposing general and specific solutions to some of the problems mentioned
above. Generally, those approaches concentrate on content interpretation and
work only with content-based features. At the same time, email data have
a temporal character: every email message has a timestamp. Therefore, we
have a sequence of items each of which has a timestamp and content. This
temporal information is always present, but usually ignored by researchers.
We would like to explore the potential relevance of temporal information to
common tasks in the email domain. The basic idea is to extract useful features
from the temporal information present in the email data and combine these
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new features with the conventional content-based classification approaches.
Our belief is that since we work with a much richer information space, we
could expect a significant improvement in the classification accuracy.

This paper presents a comprehensive study of employing temporal in-
formation in email classification. Various approaches have been implemented
and tested on several email and newsgroups corpora. The results suggest that
the proposed approach can improve the existing content-based techniques to
a moderate degree.

The reminder of the paper is organized as follows. In the next section we
give an overview of related work. Then, we start with some experiments on
adding in time in the form of simple features. Next, we introduce our idea
of representing temporal information in the form of temporal patterns. We
give the definition of a temporal pattern, present an algorithm for discovering
temporal patterns in a sequence, and describe several approaches to integrate
temporal patterns into content-based classification. After presenting and dis-
cussing the results of our experiments, we conclude the paper with possible
directions for future work.

2 Related Work

In this work we integrate methods from two different areas of research: email
classification and temporal data mining.

Numerous studies on email classification appeared in the machine learning
literature in the last few years (for an overview of the major ones see [9]). Most
of the approaches put in use only word-based features, completely ignoring
the temporal aspect of the email domain. At the same time, Sahami et al. [15]
showed that bringing in other kinds of features (spam-specific features in their
study) could improve the classification results. To filter spam messages, they
join together two sets of features, traditional textual and non-textual such
as over-emphasized punctuation, the domain type of the sender, time the
message was received, etc. Our work explores the possibility of the usage of
more complex time-related features in a general email classification context.

In the data mining field there have been a lot of research on mining
sequential patterns in large databases of customer transactions: from the
first Apriori-like algorithms AprioriSome and AprioriAll [2] to their numer-
ous modifications and extensions [13,16,17]. Similar approaches were pro-
posed for discovering sequential patterns, also called frequent episodes, in
sequences [12]. Recently, more complex temporal sequential patterns were
investigated. Works such as [7,8,11] consider interval-based sequences where
events last over a period of time (as opposed to point-based events). In this
study we work with point-based events but concentrate on time elapsed be-
tween the events. We propose a new algorithm MINTS that finds temporal
sequential patterns consisting of not only event types, but also the time inter-
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vals between the events. Therefore, our method predicts not only the expected
event in a sequence, but also when the event is likely to happen.

Work by Kleinberg [10] applies a temporal analysis in the context of
email. His assumption is that the appearance of a new topic in a document
stream is signaled by a ”burst of activity”. He presents a formal framework
for identifying such ”bursts” and shows that the document structure imposed
by this analysis has a natural meaning in terms of the content.

However, research on temporal data mining focuses only on the temporal
aspect of data and does not take into account any content-based features.
The main contribution of this paper is an attempt to integrate methods from
the two areas in one powerful heterogeneous system.

3 Email Classification with Temporal Features

3.1 Simple Temporal Features

The simplest way of incorporating temporal information in email classifica-
tion is to extract temporal features such as the day of the week and the time
of the day the message was received from the message timestamps. We add
those new features to content-based features! and run one of the standard
classification algorithms. Unfortunately, our preliminary experiments showed
that the overall effect of adding simple temporal features is not very positive
for any learning algorithm that we tried. These results suggest one of the two
possibilities: either temporal information is irrelevant to email classification
or temporal information is associated with classes in more complex ways, and
a simple classification algorithm cannot discover those associations from the
timestamps by itself. It needs our help to represent those associations more
explicitly, so that it can make use of them. To explore the second possibility
we introduce a notion of temporal sequential patterns. From a temporal email
sequence we discover temporal relations between the classes of messages in
the form of temporal sequential patterns. Then, we transform these temporal
relations into new features, combine them with content-based features, and
feed them into one of the standard classification algorithms.

3.2 Temporal Sequential Patterns

Definition. A set of emails can be viewed as an event sequence (cq,t1) —
(co,t2) — ... = (cn,tn), where each event corresponds to an email and is
represented as a pair (¢;,t;) with ¢; € C being the category of the email

1 As content-based features we use words composing the subjects and the bodies
of emails. This is the most general representation of the email content. We do
not include any other header information since it usually requires some type of
preprocessing.
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(the event type) and ¢; being the timestamp of the email. The events in the
sequence are ordered by their timestamps: t1 < ts < ... < t,.
A temporal sequential pattern is an ordered sequence of event types ¢; —
¢y — ... — ¢ along with an ordered sequence of time intervals dy — do —
. — di—1 denoted as {¢; — [d1] = ¢c2 = [do] — ... = ck—1 — [di—1] —
¢} The interpretation of pattern {¢; — [d1] — co — [d2] — ... — cp_1 —
[dik—1] — c} is the following: in a given event sequence there is a subse-
quence? (c1,t1) — (c2,t2) — ... — (ck,tr), where t; < t5 < ... < t; and
to — 11 =d17t3 — 19 ng,...,tk —tp_q :dkfl.

Mining Temporal Sequential Patterns. Our algorithm for mining tem-
poral sequential patterns is based on the ideas first presented in the classical
Apriori algorithm [1]. Apriori was initially designed to mine frequent?® intra-
transaction patterns in a database of customer transactions. It works itera-
tively producing an (n+1)-item pattern from a pair of n-item patterns that
have the same prefix?. The observation that for any pattern to be frequent all
its sub-patterns have to be frequent too makes the algorithm more efficient.
So, before scanning the database to count the number of occurrences for a
new (n+1)-item pattern we could check if all of its n-item sub-patterns are
frequent.

To accommodate the temporal aspect of an email sequence we designed
a new algorithm MINTS (MINing Temporal Sequential patterns) to mine
sequential patterns along with the exact time intervals between the events in
the patterns. Although there exist many extensions of the classical Apriori
algorithm to deal with sequential data, to the best of our knowledge none
of them deals with temporal sequences taking into account the time elapsed
between the events. To add time intervals, two key modifications have to
be made to the Apriori-like algorithm. The first one is when we combine
pairs of 1-event patterns to make 2-event patterns, we have to consider every
possible time interval between the events. The second modification is when
we combine a pair of n-event patterns to produce an (n+1)-event pattern the
n-event patterns have to have the same prefix, which includes not only the
same event types, but also the same time intervals between the events. These
modifications, especially the first one, significantly increase the computational
complexity of the algorithm.

We also have to revise the criteria by which we choose interesting patterns.
Traditionally, a pattern is considered interesting if its support and confidence
exceed user-defined thresholds. Generally, support is defined as the number of
occurrences of the pattern in the data, and confidence is defined as the ratio

2 The elements of a subsequence are not necessarily consecutive elements of the
event sequence.

3 A pattern is called frequent if we can find at least minS its occurrences in the
data. minS is a user-defined threshold called minimum support.

4 A prefix of an n-item pattern is the first (n-1) items in the pattern.
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of the support of the pattern and the support of its prefix. These conven-
tional measures have several drawbacks, especially in the temporal context.
First, support does not take into account the a priori probabilities of event
types. Patterns formed by frequent event types would naturally occur more
frequently than patterns formed by rare event types. Therefore, selecting
patterns by their support can result in missing highly predictive patterns
consisting of rare event types and finding a large number of useless patterns
formed by frequent event types. Second, the confidence of a temporal pattern
no longer represents the predictive power of the pattern. Consider the follow-
ing example. In a given sequence we have 20 occurrences of event type ¢; and
10 occurrences of temporal pattern ¢; — [d] — ¢o. Thus, the confidence of
the pattern ¢; — [d] — ¢o is 50%. That means that after an event of type
c1 an event of type ¢y would happen in d time units with 50% probability.
However, if in the given sequence no other event types ever happen in d time
units after an event of type c;, the probability of an event happened in d time
units after ¢; to be of type co is 100%. Since we are interested in predicting
the type of a new event knowing when it happened and, therefore, knowing
the exact time distances between the new and previous events, we prefer a
measure that would be related to the probability of an event encountered at a
time point to be of a particular class and not to the probability to encounter
an event of a particular class at the given time point.

To accommodate those drawbacks, we suggest an alternative measure of
the predictive power of a pattern. We consider a pattern to be interesting if it
occurs much more frequently than we would expect based on the frequency of
the event types composing the pattern and the length of the intervals between
the events. So, for each pair of event types we scan the sequence to find all
time intervals that occur between events of those types and count the number
of occurrences (n) for each time interval. Then, we would consider only those
intervals for which n is significantly greater than we would expect assuming
the independence of events. In other words, if the probability to encounter
the pattern n times is very small, according to the Poisson distribution, then
we consider it interesting and keep it; otherwise, we discard it.

What kinds of patterns can one expect to find? Among the patterns that
we discovered, some patterns seem to occur by chance, but some are quite
interesting. For example, we can find a pattern like {¢; — [d;] — ¢;}, which
is interpreted as events of type ¢; occur regularly each d; time units (for
example, once a week). These types of patterns are common for subscription
letters. Another interesting pattern is {¢; — [0 hours] — ¢;}, which says that
the events of type ¢; occur in bunches (or at least in pairs). We also can find
patterns like {¢; — [0hours] — ¢; — [0hours] — ¢;}, {¢; — [Ohours] — ¢; —
[0 hours] — ¢; — [0 hours] — ¢;}, etc., that specify how many events of type
¢; usually occur within a few minutes from each other. These patterns are
common for some public mailing lists like MLNet. Most of the patterns, like
the ones described above, consist of one event type. Yet, in some datasets we
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can find patterns with several event types, which suggests that those event
types are related. For example, messages from the QA department to software
engineers regarding some problems with a software product could be followed
by an email discussion of those problems among the engineers.

Sequence Prediction. Although temporal patterns give us insights into
the nature of mechanisms generating the sequence, the main application of
patterns is to predict the type of a new event in the sequence. To do so, we
look for patterns that are present at the end of the sequence. If for pattern
{e1 = [di] = coa = [d2] — ... = cg—1 — [dr—1] — cx} we find a subsequence
corresponding to its prefix {¢; — [d1] = ca = [da] — ... = cp_a — [dr—2] —
Ck—1}, then the instance found in dj_; time units after the end of the subse-
quence is expected to have type c,. We say that the pattern is applicable to
that instance.

3.3 Integration of Temporal and Content-based Features

Temporal patterns alone will not provide us with good prediction results,
but we can integrate them with content-based features, expecting that the
temporal characteristics of data would enrich the information space and allow
us to obtain better classification performance. In this work we propose six
simple methods of combining temporal and content-based information.

The following three methods transform the temporal information into new
features and add them to the set of content-based features:

e "Predicted Class”
Based on the temporal patterns applicable to the instance in question,
we can predict the class of that instance (see section 3.2). We add the
predicted class to the feature set and train a classifier. This predicted class
presents our expectations for the next message to be of a particular class.
Certainly, our expectations cannot be very reliable; they are just guesses.
We anticipate that the classification system would learn for which sets of
feature values it could rely on those guesses and for which it could not.

e ”(Cascading”
This method is similar to one presented in [6]. Instead of adding the class
of an instance predicted by the temporal patterns, we add the probabil-
ities of classes predicted by the temporal patterns. There can be several
patterns applicable to the instance in question, and they can predict
different classes. Based on pattern unexpectedness we calculate the prob-
abilities for each class to be the class of the instance in question and add
those probabilities to the feature set.

e "Patterns”
Here we add all temporal patterns applicable to the instance in question
to the feature set. We anticipate that the classification system would learn
on which patterns and in what context it could rely.
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The next two methods combine the predictions of two classifiers, content-
based and time-based:

e ”Simple Vote”
This method implements the simple voting scheme. First, we train a
classifier® on content-based features (a content-based classifier) and run
it on the test set getting a set of class probabilities for each test instance.
We also run our sequence prediction algorithm (a time-based classifier)
on the same test set getting the second set of class probabilities. Then,
we compare the probability sets and for each test instance pick the class
with the greatest probability value.

e "Replacing Uncertainties”
As in ”Simple Vote” we have two classifiers (content-based and time-
based) and two sets of class probabilities for each test instance. Since
the content-based classifier is much more accurate than the time-based
one, we pick the class predicted by the content-based classifier unless its
probability is less than a certain threshold. If it is the case we pick the
class predicted by the time-based classifier.

The last method is specific for the Naive Bayes classifier:

e "Replacing A Priori Probabilities”
In the well-known Bayes’ formula

Class) x P(Doc|Class)
P(Doc)

P(Class|Doc) = B

the term P(Class) represents the a priori class probabilities. These prob-
abilities show how frequent the classes are and how probable is for a class
to be the class of an instance without any other knowledge about the
instance. We can change the a priori probabilities with respect to our
temporal expectations. For example, if the most frequent class is ¢; but
the temporal patterns suggest the class co to be the class of the next in-
stance, then we put the a priori probability of ¢, greater than the a priori
probability of ¢;. We do it by simply replacing the a priori probabilities
with the class probabilities predicted by the temporal patterns.

3.4 Results

We have tested the proposed approaches on 6 datasets described in Table 1.
Corpus Email I consists of about 1500 personal emails of one of the au-
thors for a period of 1.5 years. Messages were divided into 15 categories by

5 Any classification algorithm producing the class probabilities as the output can
be used here. In these experiments we used only Naive Bayes since the imple-
mentations of Decision Trees and SVM that we have chosen cannot output the
probabilities.
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Table 1. Characteristics of the datasets used.

Name Description # of classes Size of the Size of the Vocabulary
training set test set size

Emails I Personal email 15 1055 452 3119
Emails II  Personal email 8 2507 1075 3251
Emails III ”Corporate” email 5 1637 702 2148
News I comp.ai

comp.ai.alife

comp.ai.doc-analysis.misc 5 1425 610 4649

comp.ai.games

comp.ai.philosophy
News IT alt.folklore.music

alt.gothic.music

alt.music.bee-gees 5 597 149 1908

alt.music.beethoven

alt.music-dire-straits
News I+II News I & News II joined 10 1947 834 5569

their content and senders. Corpus Email IT is a much bigger set of personal
emails divided into 8 categories. These categories share much of the vocabu-
lary, which makes them hard to distinguish for a conventional content-based
classifier. Corpus Email III consists of messages sent to a company’s general
email address and models the situation where an automatic assistant has to
redirect the incoming messages to the appropriate staff members.

We have also used the newsgroups messages, which are close in structure
and nature to email messages. For News I corpus we have chosen 5 Al-related
newsgroups and collected all the postings in these groups for about 3 months.
This corpus is very hard to classify since the groups are very close in content
and vocabulary. News II corpus is smaller and easier for classification; the
categories are more distinct. Corpus News I+11 is just two previous corpora
merged together.

For each dataset we have trained and tested the standard (”Words only”)
and three modified (”Predicted Class”, ”Cascading” and ”Patterns”) ver-
sions of three learning algorithms, namely Decision Trees (C4.5) [14], Naive
Bayes [3] and Support Vector Machines (SVM) [4]. We have also run three
other modified versions (”Simple Vote”, ”Replacing Uncertainties” and ”Re-
placing A Priori Probabilities”) of the Naive Bayes algorithm. Table 2 sum-
marizes the results of these experiments®. Figure 1 shows the performance
of the three learning algorithms and their three modifications with varying
vocabulary size (the number of content-based features used).

The first observation of the results is that we have been able to reduce the
classification error for each dataset tested: the reduction in error for emails is
up to 10%, for newsgroups it is up to 22%. The second observation is that no
algorithm is a clear winner. From Figure 1 we can see that ”Patterns” modi-
fication of SVM and Naive Bayes was the best algorithm for most of the vo-

5 In these experiments the words were stemmed, and the stems appearing in less
than 6 documents along with the stop-words were removed.
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Table 2. Classification accuracies.
Dateset Naive Bayes Decision Trees (C4.5) Support Vector
Machines (SVM)
words pred. casca- pat- simple repl. repl. [words pred. casca- pat- |[words pred. casca- pat-
only class ding terns vote uncert. a priori| only class ding terns| only class ding terns
prob.
emails T 82.52 82.74 78.98 83.19 82.30 82.74 82.96 |81.6 80.3 81.2 81.0|78.54 73.23 78.54 80.31
emails IT [49.30 49.30 51.91 54.42 48.93 49.77 53.95 | 51.2 52.0 51.4 51.2|56.00 49.95 60.56 59.44
emails II1|65.81 65.67 65.24 65.67 65.81 66.38 65.67 |42.2 42.2 42.2 42.2(64.81 64.96 64.96 65.10
news I 66.72 66.89 67.21 66.89 66.72 T74.1 66.89 | 64.8 64.4 66.6 66.6(71.64 59.51 69.18 62.95
news II 82.55 83.22 83.89 82.55 82.55 85.91 81.88 |91.3 91.3 91.3 90.6 |87.92 54.36 89.26 89.93
news I411|/67.51 67.51 67.27 67.51 67.51 71.70 67.63 | 70.5 73.0 72.1 71.9|73.26 35.73 71.70 66.31
Naive Bayes SVM
80
g g g "R
g g ] N
§ i Y
7 7 [ e ~ B
74 words only : words only e words only
pred. class ------ 7 pred. class ------ pred. class -
B cascading ------- : cascading ------- 66 I cascading -------
patterns 1 patterns patterns
» I I i I 2 I I 1 I 64 I I 1 I
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
vocabulary size vocabulary size vocabulary size

Fig. 1. Performance of the three algorithms and their three modifications with
varying vocabulary size.

cabulary sizes. At the same time, this modification of Decision Trees worked
very poorly for larger vocabulary. ”Predicted class” performed pretty well
with Decision Trees and Naive Bayes but extremely poorly with SVM. Sur-
prisingly, the simple ”Replacing Uncertainties” modification of Naive Bayes
worked very well for all newsgroup datasets reducing the error by 13-22%.

We noticed that Naive Bayes and SVM performed better with the addition
of temporal information on more datasets than Decision Trees. We attribute
this to the fact that Decision Trees are univariate, which means that they can
test only one attribute at a time. Temporal characteristics can be in quite
complex dependencies with content-based features. When tested alone they
are not much of help. They seem to do better when combined with content
in more sophisticated ways such as in Naive Bayes and SVM.

4 Conclusion and Future Work

In this paper we present a novel approach of combining temporal and content-
based features into a heterogeneous classification system. We apply this ap-
proach to the email domain. We also present a new algorithm MINTS to dis-
cover temporal relations in the form of temporal sequential patterns. These
temporal relations are then embedded into the conventional content-based
learning methods. The performance of the heterogeneous classification sys-
tem has been tested on several email and newsgroup datasets. The system
has been able to reduce the classification error by up to 22%.
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An email system is a dynamic environment. Typically, the variety of email
categories and their meaning are altered frequently: some categories become
unused, new ones emerge. Temporal patterns change over time. Currently, we
do not have any mechanisms to accommodate those changes. In the future,
we have to consider a possibility of the evolutionary adaptation of the system
to handle the changing context.

The proposed algorithm is fairly general and can be applied to other do-
mains that are characterized by time-related and content-related features.
In fact, email is not extremely time dependent, and, yet, we were able to
achieve reasonable improvements there. With domains more heavily depen-
dent on time we would expect even greater improvements. As our future work
we plan to investigate the possibilities of applying our approach to other do-
mains.

We can view each email message as an event generated by some external
event such as a product release, a conference announcement, approaching
holidays, etc. An external event ”causes” a temporal pattern to emerge, and
then the messages of a particular class are generated according to the pattern.
In this work we analyzed only the temporal patterns themselves without
looking at the external events. Because the nature of external events varies
from national events to minor personal events, it is not clear how to retrieve
them automatically. However, including these events into our analysis could
result in greater improvements.
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