
Hierarchical Text Categorization

and Its Application to Bioinformatics

by

Svetlana Kiritchenko

Thesis submitted to the

Faculty of Graduate and Postdoctoral Studies

In partial fulfillment of the requirements

For the Ph.D. degree in

Computer Science

School of Information Technology and Engineering

Faculty of Engineering

University of Ottawa

c© Svetlana Kiritchenko, Ottawa, Canada, 2005

Abstract

In a hierarchical categorization problem, categories are partially ordered to form a hier-

archy. In this dissertation, we explore two main aspects of hierarchical categorization:

learning algorithms and performance evaluation. We introduce the notion of consistent

hierarchical classification that makes classification results more comprehensible and easily

interpretable for end-users. Among the previously introduced hierarchical learning algo-

rithms, only a local top-down approach produces consistent classification. The present

work extends this algorithm to the general case of DAG class hierarchies and possible

internal class assignments. In addition, a new global hierarchical approach aimed at

performing consistent classification is proposed. This is a general framework of convert-

ing a conventional “flat” learning algorithm into a hierarchical one. An extensive set of

experiments on real and synthetic data indicate that the proposed approach significantly

outperforms the corresponding “flat” as well as the local top-down method. For eval-

uation purposes, we use a novel hierarchical evaluation measure that is superior to the

existing hierarchical and non-hierarchical evaluation techniques according to a number

of formal criteria.

Also, this dissertation presents the first endeavor of applying the hierarchical text

categorization techniques to the tasks of bioinformatics. Three bioinformatics problems

are addressed. The objective of the first task, indexing biomedical articles with Medi-

cal Subject Headings (MeSH), is to associate documents with biomedical concepts from

the specialized vocabulary of MeSH. In the second application, we tackle a challeng-

ing problem of gene functional annotation from biomedical literature. Our experiments

demonstrate a considerable advantage of hierarchical text categorization techniques over

the “flat” method on these two tasks. In the third application, our goal is to enrich the

analysis of plain experimental data with biological knowledge. In particular, we incorpo-

rate the functional information on genes directly into the clustering process of microarray

data with the outcome of an improved biological relevance and value of clustering results.

ii

Acknowledgements

First, I wish to express my sincere gratitude to my supervisors, Pr. Stan Matwin and Pr.

Fazel Famili. I am indebted to Stan who has taught me what it means to be a researcher

and has provided support, encouragement, and valuable criticism through all these years.

I thank Fazel for introducing me to the exciting science of bioinformatics, for generously

sharing his knowledge and expertise in this area, and for giving professional advice.

I would also like to thank the members of my committee, Pr. Nathalie Japkowicz, Pr.

John Oommen, and Pr. Marcel Turcotte, for their thoughtful comments and insightful

discussions that help me considerably improve this dissertation.

My very special thanks go to Pr. Richard Nock from the Université Antilles-Guyane

who contributed several ideas on hierarchical learning. Working with Richard was a very

stimulating and fun experience. In fact, this one-month collaboration became a turning

point in my research.

Also, I had a privilege to work with many wonderful people from the National Re-

search Council of Canada (NRC). In particular, I would like to thank the Integrated

Reasoning group at the Institute for Information Technology and especially the BioMiner

team for their professional and friendly support and help with my research. I have also

greatly benefited from the motivating discussions with outstanding biologists at the In-

stitute for Biological Sciences (IBS) and the Biotechnology Research Institute (BRI), es-

pecially Dr. Roy Walker, Brandon Smith, Dr. Maureen O’Connor, Dr. Anne Lenferink,

and Dr. Edwin Wang.

Grateful acknowledgments are made for AmikaNow! Corporation, its president Dr.

Suhayya Abu-Hakima and the whole team of great professionals for their interest in my

work, support and cooperation.

My fellow students from the University of Ottawa, Fernanda Caropreso, Marina

Sokolova, Magda Widlak, Vivi Nastase, Anna Kazantseva, Jelber Sayyad, Quintin Ar-

mour, helped me in many different ways providing much needed support, advice, and

friendship.

Thanks are also due to the researchers from all over the world, who generously made

their software available for the present research: Erin Allwein, Robert Schapire, and

Yoram Singer (BoosTexter), Ross Quinlan (C4.5), Amanda Clare (multi-label and hier-

archical extensions to C4.5), Pedro Domingos (MetaCost).

Last, but not least, I am very grateful to my family, my parents who always believed

in me and encouraged through all the way, and my husband, Misha, who made everything

possible to help me make it this far.

iii

The financial support during the course of my graduate work was provided by Natural

Sciences and Engineering Research Council of Canada (NSERC), Communications and

Information Technology Ontario (CITO), the Government of Ontario, the University of

Ottawa, AmikaNow! Corporation, and National Research Council of Canada (NRC).

iv

Contents

1 Introduction 1

1.1 Text categorization . 1

1.1.1 Formal definitions . 2

1.2 Hierarchical text categorization . 3

1.2.1 Formal definitions . 4

1.3 Motivation . 5

1.3.1 Hierarchical text categorization 5

1.3.2 Hierarchical text categorization in bioinformatics 6

1.4 Contributions . 8

1.5 Thesis outline . 9

2 Specifics of hierarchical text categorization 11

2.1 Hierarchies: ontologies, taxonomies, thesauri 11

2.2 Structure . 12

2.3 Category relationships . 13

2.4 Multi-class categorization . 15

2.5 Multi-label categorization . 16

3 Previous work 17

3.1 Document representation and feature selection 17

3.1.1 Hierarchical global feature selection 20

3.1.2 Hierarchical local feature selection 20

3.2 Learning algorithms . 22

3.2.1 Global approaches to hierarchical text learning 24

3.2.2 Local approaches to hierarchical text learning 28

3.3 Performance evaluation . 31

3.4 Applications . 38

v

3.5 Text learning in bioinformatics . 39

3.5.1 Information retrieval . 40

3.5.2 Summarization . 41

3.5.3 Named entity recognition . 42

3.5.4 Entity relationship detection . 43

3.5.5 Functional annotation . 44

3.5.6 Gene expression analysis . 46

3.5.7 Creating/maintaining knowledge databases 53

3.5.8 Knowledge discovery . 53

4 Hierarchical learning algorithms 55

4.1 Generalized hierarchical local approach 56

4.2 New hierarchical global approach . 58

4.2.1 AdaBoost.MH, a boosting algorithm for multi-class

multi-label classification . 62

4.2.2 Finding high-quality thresholds for multi-label

AdaBoost.MH . 67

4.3 Other global hierarchical approaches . 77

4.4 Summary . 79

5 Hierarchical evaluation measure 80

5.1 Motivation . 80

5.1.1 Desired properties of a hierarchical evaluation measure 82

5.2 New hierarchical evaluation measure . 87

5.3 Probabilistic interpretation of precision and recall 89

5.4 Properties of the new hierarchical measure 91

5.4.1 Satisfying all requirements for a hierarchical evaluation measure . 91

5.4.2 Simplicity . 93

5.4.3 Generality . 93

5.4.4 Consistency and discriminancy 93

5.4.5 Allowing a trade-off between classification precision and classifica-

tion depth . 101

5.5 Summary . 101

6 Experimental results 102

6.1 Datasets . 103

vi

6.1.1 20 newsgroups . 103

6.1.2 Reuters-21578 . 104

6.1.3 RCV1 V2 . 104

6.1.4 Synthetic data . 105

6.2 Learning algorithms . 106

6.3 Results . 107

6.3.1 Hierarchical vs. “flat” learning algorithms 107

6.3.2 Hierarchical global vs. local approaches 112

6.4 Summary . 114

7 Hierarchical text categorization in bioinformatics 116

7.1 Indexing of biomedical literature with Medical Subject Headings 116

7.1.1 Motivation . 117

7.1.2 Medical Subject Headings (MeSH) 118

7.1.3 OHSUMED dataset . 120

7.1.4 Results . 121

7.2 Functional annotation of genes from biomedical literature 122

7.2.1 Motivation . 123

7.2.2 Gene Ontology . 125

7.2.3 Genomic databases as the source of training data 128

7.2.4 Learning process . 131

7.2.5 Results . 135

7.3 Gene expression analysis in the presence of background knowledge 138

7.3.1 K-means clustering algorithm . 139

7.3.2 K-means enriched with functional information 140

7.3.3 Evaluation . 143

7.3.4 Datasets . 144

7.3.5 Results . 145

7.4 Summary . 148

8 Conclusions and future work 150

Appendix A 153

Appendix B 162

vii

Glossary 167

Bibliography 172

viii

List of Tables

3.1 Main functions for determining feature relevancy in the feature selection

process. 19

3.2 Contingency matrix. 31

3.3 Main functions for measuring distance in the clustering process. 49

4.1 UCI datasets used in the experiments. 71

4.2 AdaBoost.MH with different thresholding strategies on UCI data after 25

iterations. 73

4.3 AdaBoost.MH with different thresholding strategies on UCI data after 200

iterations. 74

5.1 Characteristics of the “flat” and existing hierarchical evaluation measures. 85

5.2 Contingency matrix. 90

5.3 The degree of consistency and discriminancy for hF-measure over “flat” F-

measure for uniform class distribution, 100 examples per class, and random

classifiers. 96

5.4 The degree of consistency and discriminancy for hF-measure over “flat”

F-measure for uniform class distribution, 1000 examples per class, and

random classifiers. 96

5.5 The degree of consistency and discriminancy for hF-measure over “flat”

F-measure for imbalanced class distribution (5:1), 100 examples per class,

and random classifiers. 98

5.6 The degree of consistency and discriminancy for hF-measure over “flat” F-

measure for imbalanced class distribution (10:1), 100 examples per class,

and random classifiers. 98

ix

5.7 The degree of consistency and discriminancy for hF-measure over “flat”

F-measure for imbalanced leaf class distribution (10:1), 100 examples per

class, and random classifiers. 99

5.8 The degree of consistency and discriminancy for hF-measure over “flat”

F-measure for uniform class distribution, 100 examples per class, and “re-

alistic” classification results (correct prediction is twice as probable as

incorrect one). 100

5.9 The degree of consistency and discriminancy for hF-measure over “flat”

F-measure for uniform class distribution, 100 examples per class, and “re-

alistic” classification results (correct prediction is 5 times as probable as

incorrect one). 100

6.1 Characteristics of the text corpora used in the experiments. 103

6.2 Comparative characteristics of the three learning algorithms: hierarchical

local, hierarchical global, and “flat”. 106

6.3 Performance of the hierarchical local and “flat” AdaBoost.MH on real text

corpora and synthetic data. 109

6.4 Performance of the hierarchical global and “flat” AdaBoost.MH on real

text corpora and synthetic data. 110

6.5 Performance of the hierarchical local and global AdaBoost.MH on real

text corpora and synthetic data. 113

7.1 MeSH hierarchical trees. 119

7.2 Characteristics of the OHSUMED data. 121

7.3 Performance of the “flat”, hierarchical local, and hierarchical global Ad-

aBoost.MH on the OHSUMED data. 122

7.4 GO annotations for yeast genes contained in file gene association.sgd (an

excerpt). 129

7.5 Information on yeast genes from the SGD database. 133

7.6 Training set formed from the information on yeast genes from the SGD

database. 134

7.7 Characteristics of the MEDLINE data. 135

7.8 Performance of the “flat”, hierarchical local, and hierarchical global Ad-

aBoost.MH on the MEDLINE data. 135

x

List of Figures

2.1 Example of a two-level hierarchy. 13

2.2 Consistent and inconsistent label assignments. 15

3.1 Global and local feature selection. 20

3.2 Pachinko machine. 29

3.3 Error-correcting hierarchical method by Wibowo and Williams (2002). . . 30

3.4 Distance-based hierarchical measure. 34

3.5 Weighted distance-based hierarchical measure. 36

3.6 Hierarchical measure proposed by Ipeirotis et al. (2001). 37

3.7 An example of concept hierarchy matches by Masys et al. (2001). 47

3.8 Distance measures used in clustering. 50

4.1 Generalized hierarchical local approach for tree hierarchies. 56

4.2 Re-labeling of the training data in the hierarchical local approach. 57

4.3 Inconsistent labeling by the standard hierarchical local approach on a DAG

hierarchy. 58

4.4 Generalized hierarchical local approach for DAG hierarchies. 59

4.5 Hierarchically shared attributes. 60

4.6 Hierarchical global approach. 61

4.7 Re-labeling of the training data in the hierarchical global approach. . . . 62

4.8 AdaBoost.MH. 65

4.9 Finding best single threshold for AdaBoost.MH. 68

4.10 Finding best subtree thresholds for AdaBoost.MH. 69

4.11 Finding best individual class thresholds for AdaBoost.MH. 70

4.12 AdaBoost.MH with different thresholding strategies on single-label non-

hierarchical data. 72

xi

4.13 Hierarchical AdaBoost.MH with different thresholding strategies on multi-

label hierarchical data. 76

4.14 Hierarchical AdaBoost.MH with different thresholding strategies on real

data. 77

5.1 Weaknesses of the conventional non-hierarchical measures. 81

5.2 Weaknesses of the category similarity based measure. 82

5.3 Weaknesses of distance-based hierarchical measures. 83

5.4 The desired properties of a hierarchical evaluation measure. 84

5.5 New hierarchical evaluation measure. 87

5.6 An example of inconsistency of the new hierarchical measure with the

conventional non-hierarchical measure. 94

5.7 An example of the conventional non-hierarchical measure being more dis-

criminating than the new hierarchical measure. 95

5.8 An example of the new hierarchical measure being more discriminating

than the conventional non-hierarchical measure. 95

6.1 Generation of synthetic data with and without attribute distribution in-

heritance. 105

6.2 Performance comparison of the conventional “flat” algorithm with the

hierarchical approaches. 111

6.3 Performance comparison of the local and global hierarchical approaches. . 112

7.1 Part of the MeSH “Organisms” (B) hierarchical tree. 118

7.2 Functional annotation process. 124

7.3 Part of the biological process hierarchy of the Gene Ontology. 127

7.4 Learning and classification processes in automatic functional annotation

of genes from biomedical literature. 132

7.5 Gene expression analysis. 138

7.6 K-means clustering algorithm. 141

7.7 Prediction performance of the regular and functionally enhanced K-means

clustering on the 10-cluster subset of the yeast expression data. 146

7.8 Prediction performance of the regular and functionally enhanced K-means

clustering on the full yeast expression data. 147

xii

Notation

Below is the notation used in this dissertation.

D: A domain of textual documents.

di: A textual document from a given domain of documents D.

C: A set of predefined categories (classes).

|C|: The cardinality of a set of predefined categories C.

ci: A category (class) from a given set of predefined categories C.

Ci: A subset of a given set of predefined categories C.

Ĉi: A subset Ci extended with ancestor categories:

Ĉi = {⋃ck∈Ci
Ancestors(ck)}

H: A class hierarchy.

Ancestors(p): An ancestor set of category p.

Offspring(p): An offspring set of category p.

distance(ci, cj): The distance between categories ci ∈ C and cj ∈ C in a class

hierarchy H = 〈C,≤〉.
P: Precision.

R: Recall.

F: F-measure.

hP: Hierarchical precision.

hR: Hierarchical recall.

hF: Hierarchical F-measure.

xiii

Chapter 1

Introduction

The present dissertation addresses the task of hierarchical text categorization, text cat-

egorization where categories are hierarchically organized. Specifically, we focus on two

aspects of hierarchical text categorization: learning and performance evaluation. We also

present several applications of the hierarchical text categorization techniques to the area

of bioinformatics.

The first chapter starts with the discussion of general text categorization, then for-

mally introduces the task of hierarchical text categorization, presents the motivation for

this work, and summarizes our research contribution.

1.1 Text categorization

Text categorization is a process of labeling natural language texts with one or several

categories from a predefined set12. Usually, the predefined categories are thematic, but

there are applications where categories are formed by other criteria, e.g. genre classifi-

cation, email classification by priority, etc. Text categorization is a case of supervised

learning where the set of categories and examples of documents belonging to those cate-

gories are given. This research will not concern problems of unsupervised learning, called

text clustering, where the categories are not known in advance.

Text categorization as a research area appeared in the 1960s [Maron, 1961], yet only

15 years ago it became a major field in information science due to the increased interest

1Text categorization is also known as text classification or topic spotting. In the present dissertation
we use terms text categorization and text classification interchangeably. The same applies to terms
category and class.

2A formal definition of text categorization will be given in Section 1.1.1

1

Introduction 2

in its diverse applications such as document indexing with controlled vocabulary, filtering

of irrelevant information, web page categorization, email management, detection of text

genre, and many others.

Clearly, text categorization techniques are a necessity nowadays when most informa-

tion is produced and stored digitally. Business and personal correspondence, scientific

and entertaining articles, conference proceedings, patient data are just a few examples of

electronic text collections. With the advent of World Wide Web (WWW) another mas-

sive repository of text information was created. These huge text data demand automatic

means of efficient and effective storage and retrieval that can be provided by means of

text categorization.

Example 1. In the biomedical domain there exists a rich public text repository, Medline.

It is an online library of all article abstracts published in all major biomedical journals

for the last 40 years. This resource contains vital information for life scientists, but its

free-text form makes it hard to work with. Automatic methods of categorizing the texts

into specified biological topics would help users browse the collection easily and find

the relevant information more quickly. Alternatively, categorizing articles according to a

user’s interests would also be greatly beneficial to biologists.

1.1.1 Formal definitions

Definition (Text Categorization). Text categorization is the task of assigning a

Boolean value to each pair 〈dj, ci〉 ∈ D × C, where D is a domain of documents and

C =
{
c1, . . . , c|C|

}
is a set of predefined categories. [Sebastiani, 2002]

Often, text categorization tasks are distinguished by the cardinality of the category

set |C|.

Definition (Binary/Multi-class Text Categorization). The text categorization task

is called binary if |C| = 2; it is called multi-class if |C| > 2.

Binary text categorization occurs less frequently in practice; nevertheless, it is an

important case since any multi-class problem can be converted to |C| binary problems

where each problem concerns of whether a document belongs to a category or does not.

Text categorization tasks can also be distinguished by the number of categories a

single document can be assigned to.

Introduction 3

Definition (Single-label/Multi-label Text Categorization). A text categorization

task is called single-label if each document must be assigned to exactly one category. A text

categorization task is called multi-label if each document can be assigned to any number

of categories from 0 to |C|.

1.2 Hierarchical text categorization

Hierarchical text categorization deals with problems where categories (classes) are or-

ganized in the form of a hierarchy3. This research area has received less attention, yet

it has many important applications. Many text collections are organized as hierarchies:

web repositories, digital libraries, patent libraries, email folders, product catalogs, etc. In

addition, bio-medicine has several important taxonomies: Gene Ontology (GO), Medical

Subject Headings (MeSH), Unified Medical Language System (UMLS), etc. Learning

in the presence of class hierarchies is becoming a necessity in many text categorization

applications.

Example 2. Traditionally, many biomedical topics are organized hierarchically: for

example, diseases and other health problems (ICD-10) [ICD-10, 1992], gene functions

(GO) [Ashburner et al., 2000], or Enzyme Commission Codes (ECC) [ECC, 1992]. As a

result, categorization of Medline articles (see the previous example) is often accompanied

by a hierarchy of classes and, thus, represents one of the many real-world applications

for hierarchical text categorization techniques.

Until the mid-1990s researchers mostly ignored the hierarchical structure of cate-

gories present in some domains. In 1997 Koller and Sahami carried out the first proper

study of a hierarchical text categorization problem [Koller and Sahami, 1997]. They

proposed a divide-and-conquer principle, the most intuitive for hierarchical text cate-

gorization. As humans go through a hierarchy level by level, an automatic system also

first classifies a document into high-level categories and then proceeds iteratively deal-

ing only with the children of the categories selected at the previous level. This study

experimentally showed that hierarchical information can, in fact, be extremely beneficial

for text categorization improving the classification performance over the “flat” tech-

nique. After this work a number of approaches to hierarchical text categorization have

been proposed [Chakrabarti et al., 1997, McCallum et al., 1998, Mladenic and Grobel-

nik, 1998,Wang et al., 1999,Weigend et al., 1999,Dumais and Chen, 2000,Cheng et al.,

3A formal definition of hierarchical text categorization will be given in Section 1.2.1

Introduction 4

2001, Sun and Lim, 2001, Blockeel et al., 2002, Ruiz and Srinivasan, 2002, Dekel et al.,

2004,Tsochantaridis et al., 2004,Cai and Hofmann, 2004]. In the past couple of years, it

has become an active research area. Our work contributes to this research by exploring

two of the most important aspects of hierarchical text categorization: learning and evalu-

ation. In addition, we present three real-world applications of hierarchical categorization

techniques from the field of bioinformatics.

1.2.1 Formal definitions

Definition (Poset). A finite partially ordered set (poset) is a structure H = 〈C,≤〉,
where C is a finite set and ≤ ⊆ C × C is a reflexive, anti-symmetric, transitive binary

relation on C. [Joslyn, 2004]

Given a relation ≤, we define a relation < as q < p if q ≤ p and q 6= p. For any

two categories p, q ∈ C such that q < p and 6 ∃r ∈ C : q < r < p, we will call p a

parent category of q and q a child category of p. For any category p ∈ C, its ancestor set

Ancestors(p) = {q ∈ C : q ≥ p}, and its offspring set Offspring(p) = {q ∈ C : q ≤ p}
(note that both sets include class p). We call categories that have no children leaf

categories and classes that have both parents and children intermediate (or internal)

classes.

The notion of posets is more general than the notion of trees in that categories in a

poset can have multiple parents.

Definition (Hierarchical Text Categorization). Hierarchical Text Categorization

task is a text categorization task with a given poset structure H = 〈C,≤〉 on category set

C.

For any poset H = 〈C,≤〉 that represents a hierarchy we assume the existence of the

root (or top) category Root(H) which is an ancestor of all other classes in the hierarchy:

{Root(H)} =
⋂

p∈C Ancestors(p). The root category itself has no parent classes.

Generally, text hierarchies are of a broader-narrower type where a subcategory rep-

resents a subtype or a part of the parent category (for more details see Section 2.3).

Category hierarchies are usually represented in the form of a directed acyclic graph

(DAG)4.

4The formal definition of a DAG will be given in Section 2.2

Introduction 5

1.3 Motivation

1.3.1 Hierarchical text categorization

The art of ranking things in genera and species is of no small importance and

very much assists our judgment as well as our memory. You know how much

it matters in botany, not to mention animals and other substances, or again

moral and notional entities as some call them. Order largely depends on it,

and many good authors write in such a way that their whole account could be

divided and subdivided according to a procedure related to genera and species.

This helps one not merely to retain things, but also to find them. And those

who have laid out all sorts of notions under certain headings or categories

have done something very useful.

Gottfried Wilhelm Leibniz, New Essays on Human Understanding (1704).

As Leibniz pointed out, a hierarchical organization of entities or notions is very help-

ful for humans to retain, find and analyze things. Therefore, it is not surprising that

people organize large collections of web pages, articles or emails in hierarchies of top-

ics or systematize a large body of biological knowledge in hierarchies of concepts (aka

ontologies). Such organization allows to focus on a specific level of details ignoring spe-

cialization of lower levels and generalization of upper levels. Now, the task of automatic

categorization systems is to deal with category hierarchies in an effective and efficient

way.

Theoretically, hierarchical text categorization can be easily substituted with “flat”

categorization if we ignore the class structure and replace a hierarchy with a set of cate-

gories. We can consider either only leaf categories if intermediate level categories are not

a concern, or all categories in a hierarchy, in any case, paying no attention to any cate-

gory relationships. However, by doing this we would disregard relevant information. For

most text categorization tasks the category hierarchies have been carefully composed by

humans and represent our knowledge on the subject matter. This additional information

can boost the performance of a classification system if we find the way to incorporate it in

the learning process. Although this has not been proved formally, several previous stud-

ies have demonstrated the performance advantages of hierarchical approaches over the

“flat” technique experimentally [McCallum et al., 1998,Dumais and Chen, 2000,Dekel

Introduction 6

et al., 2004,Tsochantaridis et al., 2004]. In addition, hierarchical categorization is flex-

ible, giving us a choice of the level of detail we want to deal with. We can limit the

classification process to upper levels of a hierarchy getting accurate information on doc-

uments’ general topics. On the other hand, we may want to acquire as much detail as

possible classifying documents into lower level categories.

Although a number of studies on hierarchical text categorization have been proposed

recently, we feel that there is still room for improvement. In particular, we believe that

hierarchical classification requires a special treatment to reflect the semantics of category

relations. Most of the category relations present in class hierarchies are transitive (e.g.

“is-a”, “part-of”). Thus, a logical way to pursue hierarchical classification is to assign

not just a single category in the middle of a hierarchy graph, but a complete subset

including the most specific category and all its ancestor nodes. This would lead to a

more comprehensible view on the classification results. Conversely, the conventional way

of labeling can result in an ambiguous outcome, especially in multi-label classification

when some of the ancestor categories are assigned to an instance, but not the others. In

this work, we formalize the concept of hierarchically consistent classification that realizes

this idea (Section 2.3). To the best of our knowledge, no previous study addresses a

hierarchical categorization task in a hierarchically consistent manner. Hence, we present

two learning algorithms whose main goal is to produce hierarchically consistent labeling

(Chapter 4).

The second issue of hierarchical categorization that requires special attention is perfor-

mance evaluation. Most of the studies on hierarchical text categorization focus primarily

on the learning part leaving evaluation to the conventional “flat” techniques. However, we

believe that the “flat” evaluation measures are inappropriate for the hierarchical setting

because they do not take into account the hierarchical relations among categories and,

as a result, have little discriminating power. A few hierarchical measures that have been

introduced previously are not fully satisfiable too (for details see Section 5.1). There-

fore, we propose a new hierarchical evaluation measure that possesses all the intuitively

desired properties and is simple while extremely discriminating (Chapter 5).

1.3.2 Hierarchical text categorization in bioinformatics

Hierarchical text categorization has several interesting applications in bioinformatics5.

Most new discoveries in life sciences first appear in scientific journals. Journal articles

5Bioinformatics is a field that deals with the computational aspect of biology.

Introduction 7

are free-form texts, which makes searching through them a non-trivial task. There have

been some efforts on structuring biological knowledge and organizing it in specialized

databases. For example, the Saccharomyces Genome Database (SGD) is designed to

contain all information on molecular biology of yeast (i.e. gene names, functions, DNA

sequences, etc.). To keep a database up-to-date, the facts of interest have to be extracted

from current publications and entered in the database. This is mostly done manually,

and, therefore, requires substantial resources. As a result, such databases are often

incomplete, leaving journal articles sometimes be the only source of requisite information.

Given a large volume of available literature, automatic text mining tools have become

crucial for life scientists.

The advantages of text categorization have been already recognized for many prob-

lems in bioinformatics (see Section 3.5). The main difficulty of working with biomedical

texts is the variety of terminology used. To organize the domain knowledge and to

effectively communicate this knowledge biologists have been designing controlled vocab-

ularies (or ontologies) that associate biological concepts with carefully chosen terms. The

consistent use of terminology is also beneficial for automatic text analysis tools. How-

ever, many authors still prefer to use their own terms and expressions, not to mention

the large volumes of existing literature using legacy terminology. Automatic methods

of categorizing texts into standardized terminology can address the problem of diverse

vocabulary. As controlled vocabularies are mostly designed as hierarchies, this task be-

comes a hierarchical text categorization task. In spite of its importance, this research

area has received little attention. In fact, there has been no single study known to us

that addresses the task from the hierarchical point of view. We would like to fill this gap

and bring the benefits of hierarchical text categorization to bioinformatics.

Specifically, we address the task of indexing of biomedical articles with Medical Sub-

ject Headings (MeSH), which is a standard biomedical vocabulary used to index a large

part of the Medline library. MeSH indexing is an essential part of Medline requiring

a tremendous manual effort; hence, automatic techniques for this task are extremely

valuable. Our second application tackles a more complex problem of annotating genes

with functional categories of the Gene Ontology from the biomedical literature. Func-

tional annotation of genes is one of the fundamental tasks of genomics, a subfield of

biology. We address this problem as a hierarchical text categorization task and show

that including hierarchical information on class relations benefits the classification pro-

cess to a large extent. Finally, in our third application we incorporate the functional

information on genes into the clustering process, which is one of the main steps in mi-

Introduction 8

croarray data analysis. Our experiments demonstrate that this background knowledge

significantly improves the cluster quality producing functionally coherent clusters that

are more meaningful and practical for biologists. Overall, these three applications can be

viewed as first steps towards creating and maintaining integrated biomedical knowledge

bases.

1.4 Contributions

This work presents a comprehensive study of the learning and evaluation techniques for

hierarchical text categorization. It identifies the weaknesses of the existing approaches

and proposes new methods to overcome these limitations. In particular, the formal con-

cept of hierarchically consistent classification is defined to fully reproduce the semantics

of hierarchical category relations. Then, two hierarchical learning algorithms, an ex-

tended version of the local method pachinko machine and a novel global approach, that

aim at consistent classification are proposed. Both algorithms represent general frame-

works of applying a conventional learning method in the hierarchical settings. Instead

of taking the approach of adapting a specific “flat” learning algorithm to hierarchical

categorization, we design general hierarchical procedures suitable for any conventional

multi-label learning techniques. An extensive set of experiments on real and synthetic

data demonstrates a significant advantage in performance of these techniques over the

conventional “flat” method. Moreover, the extent of the achieved improvement amplifies

with the size of a class hierarchy.

Another important contribution of this work is a novel hierarchical evaluation mea-

sure that possesses a number of imperative qualities and is superior to the existing “flat”

as well as hierarchical evaluation techniques. Specifically, the new measure is simple,

requires no parameter tuning, gives credit to partially correct classification and discrim-

inates errors by both distance and depth in a class hierarchy. It is also statistically

consistent, yet more discriminating than standard “flat” measures according to the defi-

nitions proposed by Huang and Ling [Huang and Ling, 2005], which is the only way we

know to systematically compare classifier performance measures.

This work also presents the first endeavor of applying the hierarchical text categoriza-

tion techniques to tasks in bioinformatics. Three bioinformatics problems are addressed,

namely biomedical article indexing with Medical Subject Headings, functional annota-

tion of genes from biomedical literature, and gene expression analysis in the presence of

background knowledge. These three tasks are among the high-priority daily activities

Introduction 9

in the field. Thus, automatic means that can efficiently deal with these problems are in

high demand as they can considerably reduce the manual effort.

In addition, these bioinformatics applications pose a real-life challenge for the hierar-

chical techniques. Previous studies on hierarchical text categorization used for evaluation

fairly small (mostly 2-level, rarely 3-4-level) taxonomies. We, on the other hand, explore

biomedical hierarchies that have up to 12 levels and over a thousand categories. The

experiments of such a large scale bring invaluable experience to the research.

Some parts of the present research have appeared in the following publications:

• Svetlana Kiritchenko, Stan Matwin, Richard Nock, and A. Fazel Famili. Learning

and Evaluation in the Presence of Class Hierarchies: Application to Text Catego-

rization. Submitted, 2005.

• Svetlana Kiritchenko, Stan Matwin, and A. Fazel Famili. Functional Annotation of

Genes Using Hierarchical Text Categorization. Proc. of the BioLINK SIG: Linking

Literature, Information and Knowledge for Biology, 2005.

• Svetlana Kiritchenko, Stan Matwin, and A. Fazel Famili. Hierarchical Text Cate-

gorization as a Tool of Associating Genes with Gene Ontology Codes. Proc. of the

Second European Workshop on Data Mining and Text Mining for Bioinformatics,

pp. 26-30, 2004.

Finally, we would like to note that although we mainly focus on text categorization,

the proposed hierarchical techniques may be applied to categorization of entities of any

kind, e.g. images, audio, video, etc.

1.5 Thesis outline

The remainder of the thesis is organized as follows. In Chapter 2, we discuss some issues

specific to hierarchical text categorization: hierarchical structures (DAGs and trees),

category relationships (“is-a” and “part-of”), multi-class categorization, and multi-label

categorization. We also formally introduce the notion of hierarchically consistent clas-

sification. Chapter 3 describes previous work on feature selection, learning algorithms,

evaluation, and applications of hierarchical text categorization. In addition, an overview

of previous work on text categorization in bioinformatics is given. Then, our novel hi-

erarchical techniques are presented in detail. First, in Chapter 4 we introduce two new

hierarchical learning approaches, local and global, that conform with the hierarchical

Introduction 10

consistency requirement. Then, in Chapter 5 we present a novel hierarchical evaluation

measure. We begin with a discussion of the weaknesses of the existing hierarchical and

non-hierarchical evaluation measures, after which a new measure is proposed and its

properties are examined. The experimental comparison demonstrating the superiority

of the hierarchical learning algorithms over the “flat” approach on a variety of real and

synthetic textual data is presented in Chapter 6. Chapter 7 describes three bioinfor-

matics applications where hierarchical techniques appear to be very practical. Finally,

Chapter 8 summarizes the presented research and discusses possible directions for future

work.

Chapter 2

Specifics of hierarchical text

categorization

This chapter defines some notions specific for hierarchical text categorization. In par-

ticular, we discuss the types of hierarchies (e.g. ontologies, taxonomies, thesauri), the

structural aspect of hierarchical graphs (DAGs vs. trees), the types of category relations

(“is-a” and “part-of”), multi-class and multi-label aspects of hierarchical text categoriza-

tion. Furthermore, this chapter introduces the novel concept of hierarchically consistent

classification, which is the central concept of the present dissertation.

2.1 Hierarchies: ontologies, taxonomies, thesauri

A hierarchy is a set of entities, usually terms or categories, with partially defined relation-

ships between those entities (Section 1.2.1). Hierarchies have many areas of application.

In information science, hierarchies are often used to represent controlled vocabularies in

the form of taxonomies and thesauri. According to the definition by the National Library

of Canada, controlled vocabularies establish standardized terminology for use in index-

ing and information retrieval. Taxonomy is a form of hierarchy representing a controlled

vocabulary, while thesaurus is a more advanced controlled vocabulary that gives not only

the relationships between the terms in the form of a hierarchy (narrower-broader terms),

but also related and preferable terms. In addition, taxonomies are also used to represent

a category structure as, for example, in web directories.

Another concept related to hierarchies is ontology. In ancient philosophy, ontology

referred to the study of the nature and relation of being. Today, however, ontology is

11

Specifics of hierarchical text categorization 12

defined as “a specification of a specialization” [Gruber, 1993]. It defines an information

structure for communicating knowledge. Comparing to taxonomy, ontology does not

only organize entities in a hierarchy, but also provides exact semantics for these entities.

Moreover, ontologies often use richer semantic relationships among terms. The concept

of ontology is especially widespread in life sciences (see for example, EcoCyc [Karp et al.,

1999], GenProtEC [Riley, 1998], MYGD [Mewes et al., 1997], KEGG [Ogata et al., 1999],

GO [Ashburner et al., 2000]).

In this research we deal with category hierarchies represented in the form of taxonomy

(newsgroups and news articles) and ontology (Gene Ontology).

2.2 Structure

A hierarchy is a finite partially ordered category set (poset) (Section 1.2.1). For conve-

nience, it is usually given in the form of a directed acyclic graph (DAG) (see definitions

below). Each DAG determines a unique poset.

Definition (Graph). A graph G is a pair (V, E), where V is a set of vertices (aka

nodes), and E is a set of edges between the vertices E = {(u, v)|u, v ∈ V }.

Definition (Directed Acyclic Graph). A directed acyclic graph (DAG) is a graph

where each edge has a direction and there are no cycles.

A category in a hierarchy is represented as a vertex in the corresponding directed

acyclic graph. The edges in the graph show the parent-child relations: if p is a parent of

q, then there is an edge (p, q) ∈ E leading from vertex p to vertex q. In general, we omit

the direction of edges in a graph assuming it is top-down.

Definition (Path in a Directed Graph). A path in a directed graph is a list of vertices

of the graph where each vertex has an edge from it to the next vertex. The length of the

path is the number of edges traversed.

As stated in Section 1.2.1, we assume the existence of a root category in a hierarchy,

which is the common ancestor of all classes in a hierarchy. It is usually represented as

the top node in a graph. For each vertex in a graph, there exists a path from the root

to the vertex.

Definition (Depth of a Vertex in a DAG). The depth (or level) of a vertex in a

DAG is the length of the shortest path from the root to the vertex.

Specifics of hierarchical text categorization 13

root node

intermediate nodes
(1st level)

leaf nodes

(2nd level)

Figure 2.1: Example of a two-level hierarchy showing the root (top) node, intermediate
nodes, and leaf nodes.

Definition (Depth of a Directed Acyclic Graph). The depth of a directed acyclic

graph is the maximal depth over all vertices in the graph.

Sometimes, we call a DAG hierarchy of depth n an n-level hierarchy. For example, a

two-level hierarchy has depth 2, in other words, having a root node, intermediate nodes

and leaf nodes (Figure 2.1).

Definition (Average Out-degree of a Directed Graph). The out-degree of a vertex

v is the number of edges initiated in vertex v. The average out-degree of a directed graph

is the average of the out-degree of all its vertices.

There is a special case of DAG, called tree, where each vertex is allowed to have

exactly one parent (except a root node that has no parent). Since a tree is a simpler

kind of a hierarchy, most of the previous research on hierarchical text categorization dealt

with trees only. We, on the other hand, consider methods that work with general DAGs

and experiment with real-life DAG hierarchies, such as the Gene Ontology.

2.3 Category relationships

There exist several kinds of relationships between entities: “is-a”, “part-of”, “made-of”,

“cause-to”, “similar-to”, etc. However, in category hierarchies only two kinds can be

usually found: “is-a” and “part-of”. “Is-a” is a specification relationship. For example,

cell adhesion is a kind of cell communication, so that the category “cell adhesion” is a

(more specific) subcategory of the category “cell communication”. The “is-a” relation is

asymmetric (e.g. cell adhesion is a kind of cell communication, yet cell communication is

not only cell adhesion) and transitive (cell adhesion is a kind of cell communication, cell

communication is a cellular process; therefore, cell adhesion is a cellular process) [Ruiz

and Srinivasan, 2002]. In an “is-a” hierarchy, if an object belongs to a category it also

belongs to all its ancestor categories.

Specifics of hierarchical text categorization 14

“Part-of” is a partitive relationship. For example, cell aging is a part of the process

called cell death; thus, the category “cell aging” is a subcategory (a part) of the category

“cell death”. Similarly, the “part-of” relation is asymmetric and transitive. We will also

consider that in a “part-of” hierarchy, if an object belongs to a category it also belongs

to all its ancestor categories.

Most of the text hierarchies are “is-a”. However, some biological hierarchies, for

example Gene Ontology, contain “is-a” as well as “part-of” relationships.

As stated above, for most class hierarchies we can safely assume that an instance

belonging to a category also belongs to all ancestor nodes of that category. Therefore,

it is meaningless to assign an instance to a category and not assign it to the parent

category, as conventionally done in hierarchical classification systems. For example,

saying that a gene is responsible for “cell adhesion”, but not for “cell communication”

would be inappropriate. We want to express this semantics explicitly by requiring a

classifier to assign all the relevant labels, including the ancestor labels, to a given instance.

In this way, the assigned labels would clearly indicate the position of an instance in

a category hierarchy. Thus, we introduce the notion of hierarchical consistency and

expect any hierarchical classification algorithm to conform to the hierarchical consistency

requirement defined as follows [Kiritchenko et al., 2005b].

Definition (Hierarchical Consistency). A label set Ci ⊆ C assigned to an instance

di ∈ D is called consistent with a given hierarchy if Ci includes complete ancestor sets

for every label ck ∈ Ci, i.e. if ck ∈ Ci and cj ∈ Ancestors(ck), then cj ∈ Ci
1.

Definition (Hierarchical Consistency Requirement). Any label assignments pro-

duced by a hierarchical classification system on a given hierarchical text categorization

task has to be consistent with a corresponding class hierarchy.

Fiqure 2.2 presents examples of consistent and inconsistent label assignments. The

figure on the left gives an example of the consistent assignment since the set includes

labels along with all their ancestors. The figure on the right shows an inconsistent

assignment: label A is included while its parent label B is not. Such situations can occur

if we apply a conventional text categorization method to a hierarchical task without any

modifications.

1We assume that every instance belongs to the top class of the hierarchy; therefore, we always exclude
the top node from any ancestor set since including it does not provide any additional information on
the instance.

Specifics of hierarchical text categorization 15

A

B

Figure 2.2: Examples of consistent and inconsistent label assignments. The ellipses in
bold represent the categories assigned to an instance by a classifier. The left figure
represents a consistent assignment since the labels are included in the set along with
all their ancestors. The right figure shows an inconsistent assignment since node A is
included in the set while its parent, node B is not.

2.4 Multi-class categorization

Unlike classical text categorization where binary applications are common (for example,

spam filtering), hierarchical text categorization is always multi-class. Even when we

divide a given task into smaller subtasks, rarely do we have only two classes. For example,

the first level of the biological process hierarchy in Gene Ontology has 7 categories. They

in turn contain from 6 to 41 children categories with the exception of one category,

“biological process unknown”, containing no children. Overall, the hierarchy consists of

several thousands of categories.

Most of the state-of-the-art learning algorithms, such as Naive Bayes, decision trees,

neural networks, are capable of dealing with multiple classes. However, there are al-

gorithms, for example Support Vector Machines, that were designed to work only with

binary problems. In such cases we can easily transform a given n-class problem into n

binary problems: the ith binary problem corresponds to a decision if an instance belongs

to the ith category or not. Yet, the computational complexity of the transformed problem

would be higher since we now have to solve n problems instead of one.

Another way of dealing with multiple categories is pairwise comparison. We transform

a given n-class problem into n·(n−1)
2

binary problems each time comparing only a pair of

categories. The final decision for each category is taken by a vote.

A more interesting and less computationally expensive solution for a multi-class prob-

lem is Error-Correcting Codes (ECOC) [Dietterich and Bakiri, 1995]. Each of the n cat-

egories is mapped into a unique k-bit string (k < n) called a codeword. Then, k binary

classifiers are trained, one for each bit. When a new instance is classified, a category

with the codeword closest to the bit string produced by the classifiers is selected.

Specifics of hierarchical text categorization 16

2.5 Multi-label categorization

Most of the real-life applications of hierarchical text categorization are multi-label tasks,

which means that an instance can belong to any number of categories from 0 to |C|.
For example, a gene can be associated with several biological processes and, therefore,

would be classified into several category nodes of Gene Ontology. Some of the learning

algorithms can be readily applied to such problems. For example, with a Naive Bayes

classifier we could assign to an instance not only the category with the highest predicted

probability, but also all categories for which the probabilities are greater than a certain

threshold. For other algorithms that can predict only one category at a time, a common

solution is to transform an n-class problem into n binary problems (as described in the

previous section).

The computational overhead of solving many binary problems instead of one multi-

label problem forced several researchers to look for other solutions. One such solution

is to adapt classical learning algorithms to predict not one category, but a set of cate-

gories simultaneously. As a result, there has been some work on modifying the decision

tree learning algorithm by extending the expression for class entropy for multi-label

categorization [Suzuki et al., 2001,Clare, 2003]. Wang and colleagues adapted an associ-

ation rule based method to allow a set of categories be predicted by a single rule [Wang

et al., 2001], while McCallum proposed a Bayesian approach where multiple labels for

a document are represented by a mixture model [McCallum, 1999]. In this research, we

employed AdaBoost.MH, a multi-class multi-label version of a very successful boosting

algorithm AdaBoost [Schapire and Singer, 1999].

Chapter 3

Previous work

This chapter discusses the related work on three aspects of hierarchical text catego-

rization: feature selection, learning algorithms, and performance evaluation. Then, it

presents several applications of hierarchical text categorization to other domains such

as email classification, personalization systems, question answering, etc. Finally, an

overview of text learning related research in bioinformatics is given. By analyzing pre-

vious work on hierarchical text categorization and text learning applications in bioin-

formatics, we identify several issues that require further investigation and address those

issues in the following chapters of the present dissertation.

3.1 Document representation and feature selection

The conventional method of representing texts is the bag of words approach where each

word (or word stem1) from a vocabulary corresponds to a feature and a document cor-

responds to a feature vector. Sometimes, instead of single words, features can represent

phrases or n-grams, sequences of n words with n ≥ 2 [Mladenic and Grobelnik, 1998].

Intuitively, more complex features such as phrases should enrich the information space.

For example, the phrase “world wide web” is much more informative for text categoriza-

tion than those three words separately. However, in practice the use of n-grams leads to

an overwhelming number of features and can actually deteriorate the performance [Caro-

preso et al., 2001].

After determining the features, we need to compute the feature values (or term

1A word stem is the morphological root of the word. The common name for both types of features
(word and word stem) is term.

17

Previous work 18

weights) for each document. It can be done in several ways. Binary features refer to

the presence or absence of a term. Term frequencies present the number of times a term

occurred in a document, sometimes normalized by the total number of term occurrences

in a document. Another common method for computing term weights is TFIDF:

TFIDF = TF (tk, dj) · log |D|
DF (tk)

,

where TF (tk, dj) defines the number of times term tk occurs in document dj, DF (tk)

denotes the number of documents term tk occurs in, and |D| stands for the total number

of training documents in the collection2. The intuition behind this formula is to give more

weight to terms frequently occurring in a document but rarely in the whole collection,

and, thus, having more discriminating power.

Generally, only a small portion of all possible features is used in a categorization

system. The sizes of the vocabularies of modern text collections are estimated in hundreds

of thousands. Processing of the feature vectors of such dimension requires extensive

computational resources and can sometimes be infeasible for some learning algorithms.

In addition, many of these features are uninformative or noisy, which can lead to the

problem of overfitting. In machine learning, the traditional way of dealing with a vast

number of features is feature selection.

Feature selection is a process of selecting the most informative features while discard-

ing the noisy ones. There are two main types of feature selection methods: wrappers

and filters. A wrapper approach chooses a feature subset that leads to the best classi-

fication performance for a given learning algorithm, while a filter approach chooses the

most relevant features without consideration of the learning procedure. The latter is

computationally easier and, therefore, has been more preferable in text categorization.

A number of criteria for determining the feature relevancy for the text categorization

task have been proposed in the literature. Some of them are presented in Table 3.1.

In hierarchical text categorization the need for feature selection is even more apparent

since the hierarchical corpora are usually larger. Almost all studies on hierarchical text

categorization are forced to select a feature subset in order to be able to run experiments

on real-life data.

In hierarchical text categorization feature selection has been used in a global or local

way.

2In the present dissertation we follow the general approach of defining the terms constituting a
mathematical expression immediately after the expression.

Previous work 19

Function Mathematical Form

Document frequency P (tk|ci)

Mutual information log P (tk,ci)
P (tk)·P (ci)

Information gain P (tk)
∑

i P (ci|tk) · log P (tk,ci)
P (tk)·P (ci)

+ P (t̄k)
∑

i P (ci|t̄k) · log P (t̄k,ci)
P (t̄k)·P (ci)

Cross entropy P (tk)
∑

i P (ci|tk) · log P (tk,ci)
P (tk)·P (ci)

Weight of evidence
∑

i P (ci) · P (tk) ·
∣∣∣log P (ci|tk)(1−P (ci))

P (ci)(1−P (ci|tk))

∣∣∣

Odds ratio P (tk|ci)·(1−P (tk|c̄i))
(1−P (tk|ci))·P (tk|c̄i)

Chi-square |D|·(P (tk,ci)·P (t̄k,c̄i)−P (tk,c̄i)·P (t̄k,ci))
2

P (tk)·P (t̄k)·P (ci)·P (c̄i)

Correlation coefficient (P (tk,ci)·P (t̄k,c̄i)−P (t̄k,ci)·P (tk,c̄i))·
√
|D|√

(P (tk,ci)+P (t̄k,ci))(P (tk,c̄i)+P (t̄k,c̄i))(P (tk,ci)+P (tk,c̄i))(P (t̄k,ci)+P (t̄k,c̄i))

Fisher index

∑
l
|cl|·(1

|cl|
∑

dj∈cl
TF (tk,dj)− 1

|ci|
∑

dj∈ci
TF (tk,dj))

2

∑
l
(1
|cl|

∑
dj∈cl

(TF (tk,dj)− 1
|cl|

∑
dj∈cl

TF (tk,dj))2)

Table 3.1: Main functions for determining feature relevancy in the feature selection pro-
cess. The functions specify the relevancy of term tk to category ci ∈ C in the probabilistic
form. The probabilities are estimated by counting the corresponding occurrences in the
training data. For example, P (tk) denotes the probability that a random document d
contains term tk and is estimated as the proportion of documents containing tk in the
training set. |D| denotes the total number of documents, t̄k represents the absence of
term tk, and c̄i represents all categories in C other than ci. In the last formula, Fisher
index, TF (tk, dj) stands for the number of occurrences of term tk in document dj and
|ci| states the number of documents in category ci.

Definition (Global Feature Selection in Hierarchical Text Categorization). In

hierarchical text categorization feature selection method is called global if it selects features

that distinguish among all categories in a given hierarchy.

Definition (Local Feature Selection in Hierarchical Text Categorization). In

hierarchical text categorization feature selection method is called local if it selects relevant

features for each subproblem separately, where a subproblem corresponds to an internal

node of a class hierarchy.

A global approach to feature selection is akin to traditional feature selection in “flat”

text categorization (Figure 3.1a). A local approach, on the other hand, treats every

Previous work 20

animal

husbandry

crop

farming

agriculture computers

OS
programming

languages

milk

cow

sheep

disease

Windows

Linux

java

C++

farm computer

wheat animal

Windows java

animal

husbandry

crop

farming

agriculture computers

OS
programming

languages

farm computer

wheat animal

Windows java

milk C++

cow Linux

sheep disease

a) b)

Figure 3.1: Global (a) and local (b) feature selection. In global feature selection one set
of features is used to discriminate among all categories in a hierarchy. In local feature
selection each internal node of a hierarchy has its own set of features.

internal category as a separate classification subtask and selects features for each subtask

independently. Relevant features for a subtask are the ones that discriminate the children

categories of the corresponding internal node (Figure 3.1b).

3.1.1 Hierarchical global feature selection

A global approach is normally employed in systems where learning is also done in a

global manner, i.e. only one classifier is constructed to distinguish among all categories

in a hierarchy [Frommholz, 2001, Itskevitch, 2001]. However, Wibowo and Williams

use global feature selection while splitting the initial task into subtasks for learning

a classifier [Wibowo and Williams, 2002a]. To manage an overwhelming number of

potential global features, they propose a simple and fast method of selecting a fixed,

small number of terms from the beginning of each document. McCallum et al., on the

other hand, use the global approach to classification while selecting the features locally

at first and then taking the union of the feature subsets [McCallum et al., 1998]. They

choose the most relevant features based on mutual information (see Table 3.1).

3.1.2 Hierarchical local feature selection

A local approach to feature selection, unlike the global one, takes advantage of divid-

ing a large initial problem into subproblems. The benefits of doing this are two-fold.

First, the number of features needed to discriminate among a small number of cate-

gories (for a subtask) is typically much less than what would be needed for an initial

problem containing hundreds of categories. Second, feature subsets for each subproblem

are selected independently, so that a small number of features, the most relevant for a

Previous work 21

particular subproblem, can be chosen. The subproblems can differ substantially and,

therefore, should be categorized by different terms. Like in the example by Koller and

Sahami, words “farm” and “computer” are good indicators for topics “agriculture” and

“computers”, but these words are unlikely to be helpful to distinguish between “animal

husbandry” and “crop farming” because “agriculture” is likely to appear in documents

of both kinds and “computers” most probably will not appear in any documents [Koller

and Sahami, 1997]. As a result, the authors propose to use local feature selection, i.e.

choosing relevant features at each node of a hierarchy. In their work they use expected

cross-entropy (see Table 3.1) and show that their hierarchical classifier reaches the best

performance with only a few words (in their case, 10) and its performance is superior to

the performance of a “flat” classifier [Koller and Sahami, 1997].

Before Koller and Sahami’s classical paper, there were a few works mentioning hier-

archical categorization. In the study by Ng et al., the authors compared three methods:

correlation, chi-square, and term frequency, selecting features at each node of the hier-

archy [Ng et al., 1997]. Yet, hierarchical categorization was not the primary focus of the

paper, and the authors did not compare the performance of the hierarchical approach

with the performance of the corresponding “flat” approach. Wiener and colleagues pro-

posed to create a hierarchy over a set of categories, combining similar topics into one

high-level category [Wiener et al., 1995]. They employed this new hierarchy to perform

local feature selection with Latent Semantic Indexing (LSI)3 and top-down classification

approach with neural networks. Their results showed the improved performance of the

hierarchical model over the “flat” model. Nevertheless, Koller and Sahami’s paper was

the first work whose goal was to explore hierarchical text categorization, categorization

with a given category hierarchy, and therefore, is often cited as the pioneering work in

this area.

Following that work, a number of studies applied local feature selection for hier-

archical text categorization using different feature relevancy criteria such as Fisher in-

dex [Chakrabarti et al., 1997,Cheng et al., 2001] or information gain [Dumais and Chen,

2000]. In the paper by Chuang et al. feature selection with the help of manually made

positive and negative feature vectors is compared to TFIDF-based selection with the

former significantly outperforming the latter [Chuang et al., 2000]. Ruiz and Srinivasan

compare correlation, mutual information, and odds ratio, finding that these three meth-

3Latent Semantic Indexing is a feature selection technique that reduces the dimensionality of the
feature vector space by combining co-occurring terms into joint features. The dimensionality reduction
is achieved by applying a singular value decomposition to the matrix formed by the original document
vectors.

Previous work 22

ods perform the same if mutual information is enhanced with discarding low frequency

terms [Ruiz and Srinivasan, 2002]. On the other hand, Mladenic and Grobelnik compare

6 different feature selection methods, namely information gain, cross entropy, mutual

information, weight of evidence, odds ratio, and term frequency and find that odds ratio

perform the best [Mladenic and Grobelnik, 1998]. Also, they confirm Koller and Sahami’s

conclusions that the best results are achieved for relatively small feature subsets.

Feature selection methods specific for hierarchical categorization have also been pro-

posed. In the work by D’Alessio et al. features are chosen locally based on their fre-

quency: a feature is considered relevant for a category if its occurrence in the category

is much higher than in the parent category. In other words, since a parent category is

formed as a union of its children, a feature is relevant if it occurs in the category more

frequently than in the sibling categories altogether [D’Alessio et al., 2000].

The comparison between the local and global approaches to feature selection has

been performed by Weigend and colleagues [Weigend et al., 1999]. Two methods, chi-

square and latent semantic indexing (LSI) are used in combination with hierarchical

neural networks. Surprisingly, the results are mixed. On Reuters-22173 dataset the

local feature selection with LSI outperforms the corresponding global approach, whereas

the local approach with chi-square performs better only on the subset of low frequency

categories.

3.2 Learning algorithms

Until the mid-1990s machine learning researchers mostly ignored the hierarchical category

structure present in some text categorization applications by turning a hierarchy into a

flat set of categories. With the appearance of World Wide Web and other large collections

of documents the need in hierarchical classification has increased. As a result, a number

of studies on hierarchical text categorization have appeared in literature.

Hierarchical categorization methods can be divided in two types [Wang et al., 1999,

Itskevitch, 2001,Sun and Lim, 2001]: global (or big-bang) and local (or top-down level-

based).

Definition (Global Hierarchical Text Categorization). In hierarchical text catego-

rization, a learning approach is called global if it builds only one classifier to discriminate

all categories in a hierarchy.

A global approach differs from “flat” categorization in that it somehow takes into

Previous work 23

account the relationships between the categories in a hierarchy.

Definition (Local Hierarchical Text Categorization). In hierarchical text catego-

rization, a learning approach is called local if it builds separate classifiers for internal

nodes of a hierarchy.

A local approach usually proceeds in a top-down fashion first picking the most relevant

categories of the top level and then recursively making the choice among the low-level

categories, children of the relevant top-level categories. A local approach seems natural

for hierarchical classification since it reflects the way that humans usually perform such

tasks. Discriminating among a few categories, children of one internal node, is much

easier than discriminating among hundreds of categories. The same is also true for

automatic systems. In machine learning it is well known experimentally that, in general,

the more categories are present, the more difficult the task is, and therefore, the lower

classification accuracy can be reached4. Also, intuition tells us that classifying into

high-level categories is easier than discriminating among all categories not only because

the number of categories is smaller but also because they are more distinctive. Then,

after correct categorization into one of the high level categories is done, the number of

possible low-level categories becomes smaller if we consider only the children of the correct

high-level categories. This intuition has been confirmed experimentally by Wibowo and

Williams [Wibowo and Williams, 1999]. In their study, the number of misclassification

errors at the parent level is 11 times smaller than the number of misclassification errors

at the children level.

However, each of the approaches has its weaknesses [Sun and Lim, 2001]. The global

approach is computationally heavy. It cannot exploit different sets of features at different

hierarchical levels. Finally, it is not flexible; a classifier has to be re-trained each time the

hierarchical structure changes. The local approach, while computationally more efficient,

has to make several correct decisions in a row to correctly classify one example, and errors

made at top levels are usually not recoverable. Also, at low levels the categories become

smaller, so the number of training examples can be insufficient to learn a reliable classifier.

Below, we give a brief overview of both global and local learning algorithms that appear

in the literature.

4For example, a random classifier has a 50% chance to correctly classify an instance in a binary
problem and only 1/ |C| for a multi-class problem (|C| > 2).

Previous work 24

3.2.1 Global approaches to hierarchical text learning

Despite its computational overhead, the global approach has been employed in several

text categorization systems. An association rule based method has been proposed by

Wang and colleagues [Wang et al., 1999]. Given a hierarchy of categories and a hierarchy

of terms, they produce a set of rules in the form X → C, where X is a set of terms and

C is a category. Based on algorithms for mining association rules, they first generate

all rules X → C that satisfy the minimum support specified by a user. Then, they sort

the rules according to some ranking criteria that take into account the distance in the

hierarchy between the correct and assigned category. Finally, they select the minimal

number of top rules that gives the minimum error. In the subsequent study they extend

this approach to accommodate multi-label categorization [Wang et al., 2001]. In addition,

they modify their ranking criteria. Their new metric takes into account the category set

similarity and is based on the number of documents shared by two category sets (see

Section 3.3). Itskevitch proposes a slightly different approach for creating association

rule hierarchical classifier [Itskevitch, 2001]. She produces a tree-like structure of frequent

patterns found in data and prune the rules based on specified criteria during and after

the tree construction.

Some researchers adapt decision tree learning algorithms to accommodate for multi-

label classification and to take into account a given class hierarchy [Blockeel et al.,

2002, Clare, 2003]. In their work, Blockeel and colleagues employ predictive cluster-

ing trees [Blockeel et al., 2002]. Predictive clustering trees are decision trees that can

predict multiple target attributes at once. They are obtained in a standard top-down

fashion by recursively partitioning data into clusters such that the intra-cluster variance

is minimized. Intra-cluster variance is defined as the sum of squared distances between

the members of the cluster and its center (a point closest to all members of the cluster).

In their work the distances between data points are calculated as the weighted shortest

path distance between the corresponding categories in a hierarchical tree, i.e. the sum of

the weights of the edges on the shortest path between the class nodes (see Figure 3.5a).

The weights decrease exponentially with depth.

Clare adapts classical decision tree algorithm C4.5 [Clare, 2003]. She allows several

most frequent classes to be associated with a leaf. In addition, she changes the entropy

formula combining the class entropy with the classification depth as follows:

entropy = −∑

i

(P (ci)logP (ci) + (1− P (ci))log(1− P (ci))− α(ci)log(tree size(ci))) ,

Previous work 25

where tree size(ci) is the number of nodes in a subtree rooted in ci and

α(ci) =





0, if P (ci) = 0,

a user defined constant, otherwise.

With the parameter α a user can trade off between the homogeneity of predictive nodes

(which would reflect classification precision) and the specificity level of predictions in a

hierarchical tree.

More recently, large margin classifiers have been extended to be applicable in the

hierarchical settings [Dekel et al., 2004]. In this work, each node in a class hierarchy is

associated with a prototype vector, and an instance is classified to the class with the most

similar prototype. The general idea of prototype-style classifiers has been implemented

in several well-known learning algorithms, e.g. in the Rocchio method [Hull, 1994]. Dekel

and colleagues combine this prototype-style approach with the large margin principle and

put it in the context of hierarchical categorization. The hierarchical settings impose the

requirement of adjacent categories in a hierarchical tree to have similar prototypes. The

learning algorithm works in an online manner updating the current prototype vectors at

each round when a new training instance is given. The new set of prototypes is kept close

to the current set while maintaining the large margins between the correct and each of

the incorrect labels for a given instance. Formally, at each round the new prototypes are

obtained as the solutions of a constrained optimization problem:

min{pv}
1

2

∑

v∈C

‖pv − pv
i ‖

s.t.
∑

v∈Ancestors(ci) (pv · di)−∑
u∈Ancestors(cj) (pu · di) ≥

√
distance(ci, cj),

where pv are new prototype vectors, pv
i are current prototype vectors, (di, ci) ∈ D×C is

a given training instance, cj ∈ C is any class label, and distance(ci, cj) is the number of

edges between labels ci and cj in the hierarchical tree.

Another approach based on the maximum margin idea has also appeared in the

literature [Tsochantaridis et al., 2004,Cai and Hofmann, 2004]. This approach builds on

the work by Crammer and Singer [Crammer and Singer, 2001] that adapts the classical

binary learning algorithm Support Vector Machines (SVM) to the multi-class settings.

Consequently, Tsochantaridis et al. extend the multi-class SVM to the case of hierarchical

classification. In Crammer and Singer’s approach to multi-class SVM, the goal is to learn

a discriminant function F : D × C → <, which is then maximized over the category set

Previous work 26

C to predict a class for a given document d ∈ D:

f(d; w) = argmaxc∈CF (d, c; w),

where w = (w1, . . . , w|C|) is a parameter vector. To account for the hierarchical settings,

Tsochantaridis et al. assume F to be linear in a combined feature representation of

inputs and outputs Φ(d, c) that encodes the relationships between classes in a hierarchy:

F (d, c; w) ≡ 〈w, Φ(d, c)〉 =
∑

v∈Ancestors(c)

λv(c) 〈wv, d〉 ,

where 〈., .〉 denotes the inner product between two vectors, and Λ(c) = (λ1(c), . . . , λ|C|(c))

is an attribute vector defined as follows:

λv(c) =





zv, if v ∈ Ancestors(c),

0, otherwise.

The zv are non-negative weights, which in the simplest case can be set to 1. Such a

discriminant function takes account of all nodes along the path from a root to a specific

leaf. In addition, the authors generalize the SVM optimization problem:

minw,ξ
1

2
‖w‖2 +

Const

|D|
|D|∑

i=1

ξi, s.t. ∀i, ξi ≥ 0

∀i,∀cj ∈ C \ c : 〈w, δΦi(cj)〉 ≥ 1− ξi,

where δΦi(cj) ≡ Φ(d, c) − Φ(d, cj) and |D| stands for the total number of training doc-

uments. This optimization problem is extended to the case of arbitrary loss functions

∆ in two ways. The first method re-scales the slack variables ξi according to the loss

incurred in each of the linear constraints:

∀i, ∀cj ∈ C \ c : 〈w, δΦi(cj)〉 ≥ 1− ξi

∆(c, cj)
.

The second method re-scales the margin itself:

∀i,∀cj ∈ C \ c : 〈w, δΦi(cj)〉 ≥ ∆(c, cj)− ξi.

The loss function ∆(c, cj) reflects the class relationships in a hierarchy and is defined as

Previous work 27

the height of the deepest common ancestor of c and cj in a hierarchal graph [Tsochan-

taridis et al., 2004] or through the distance from c to cj in a hierarchical tree [Cai and

Hofmann, 2004].

Shrinkage is another global approach. Here a probabilistic classifier that discriminates

between all leaf categories is built while its parameters (such as P (tk|ci)) are estimated

based on the whole hierarchy. Since the low-level categories are usually small, the number

of training examples is insufficient to make robust parameter estimates. To overcome this

problem, smoothing of the parameter estimates of a child category with the estimates of

its ancestors has been proposed [Greiner et al., 1997,McCallum et al., 1998,Toutanova

et al., 2001,Gaussier et al., 2002]. Smoothing can be achieved by a linear interpolation

of estimates of all hierarchy nodes from the child to the root:

P (tk|ci) =
∑

j

λi,j · P (tk|vj),

where sum is taken over all nodes v on the path from ci to the root and
∑

j λi,j = 1. In

the work by Greiner et al. the weights λi,j are set to be inversely proportional to the

variances of the corresponding estimates, where the variance in an internal node is the

variance of the estimates among the children of the node [Greiner et al., 1997]. McCallum

and colleagues, on the other hand, use the weights that maximize the likelihood of data

[McCallum et al., 1998]. The weights can be found by the Expectation-Maximization

(EM) algorithm [Dempster et al., 1977].

Toutanova and colleagues extend the work by McCallum et al. in that they use EM to

compute the interpolation weights λs as well as the node conditional word distributions

at inner nodes P (tk|v) to maximize the likelihood of data [Toutanova et al., 2001]. That

allows them to do selective shrinkage, i.e. choosing more general words from the upper

levels and very specialized ones from the leaf nodes. The same approach to the estimation

of conditional word probabilities P (tk|ci) is taken by Gaussier and colleagues [Gaussier

et al., 2002]. In addition, they consider soft assignment of categories to documents and

estimate P (d|ci) by maximizing the log-likelihood of a document (again with EM):

L(d) =
∑

k

log


∑

i

P (ci)P (d|ci)
∑

j

P (vj|ci)P (tk|vj)




Completely different approach has been proposed by Frommholz [Frommholz, 2001].

Starting from the posterior probability estimates for each class provided by a “flat”

Previous work 28

classifier, he calculates the final score of a category ci based on the posterior probabilities

of other categories and their proximity to ci:

PH(c|d) =
∑

i

P (ci|d) · P (ci) · CS(c, ci)

The set of class proximities CS(ci, cj) can be given by a user or can be estimated in

the following way. For two neighboring categories the class proximity is the proportion

of shared terms. For two distant categories the class proximity is the sum over all

paths between the nodes in a hierarchical tree of the products of class proximities of the

neighboring categories on a path.

Overall, none of the previously introduced hierarchical global algorithms produces

hierarchically consistent classifiers. As we argue in Section 2.3, hierarchical consistency

is an integral element of hierarchical categorization. Therefore, we propose a novel hier-

archical global approach that performs consistent classification (Chapter 4). Moreover,

unlike previous global hierarchical methods that typically focus on a specific learning

algorithm, e.g. association rules, decision trees, etc., the new approach is a general hier-

archical framework in which any conventional “flat” multi-label learning algorithm could

be adapted to the hierarchical setting.

3.2.2 Local approaches to hierarchical text learning

While many global approaches to hierarchical text categorization have been proposed in

literature, local approaches are, nevertheless, more popular due to their computational

benefits. In general, we can divide local approaches in two groups: pachinko machine

(sequential Boolean decisions) and probabilistic (multiplicative decisions). In pachinko

machine a decision which path in a tree to take is made sequentially at each level of a

hierarchy, while in a probabilistic method all paths are considered simultaneously, their

probabilities are calculated as the product of individual probabilities of categories on a

path and the most probable path is picked as a solution.

The name, pachinko machine, comes from a Japanese gambling machine which is a

mixture between a slot machine and pinball (see Figure 3.2). It looks like a vertical

pinball where small steel balls thrown by a player fall down through a maze of nail-like

pins. A player can control only the speed of releasing the balls; after that it is a game of

chance. Most of the balls just fall down while some fall into special holes, which activates

a slot machine with three spinning reels. A player wins if the same three pictures appear

Previous work 29

Figure 3.2: Pachinko machine (taken from http://slotsdirect.com).

in the slot machine.

As in a gambling counterpart, in a hierarchical pachinko machine the classification

decisions are made in a top-down fashion iteratively and irreversibly. At each level the

classifier selects one (or several, in case of multi-label categorization) most probable

category(ies) for a test example and then proceeds down the hierarchy inspecting only

the children of the selected nodes. This method has been widely used with different

learning algorithms: linear [Ng et al., 1997,D’Alessio et al., 2000,Wibowo and Williams,

2002a], probabilistic [Koller and Sahami, 1997,Wibowo and Williams, 2002a], decision

rules [Ipeirotis et al., 2001], neural networks [Ruiz and Srinivasan, 2002], and SVM [Sun

and Lim, 2001,Wibowo and Williams, 2002a].

A probabilistic hierarchical local approach makes probabilistic decisions at each level

of the hierarchy and then selects the leaf categories on the most probable paths. This

method is more computationally expensive than pachinko machine since we have to learn

classifiers at every node. Therefore, there have been just a few studies on this technique:

it has been used in combination with probabilistic classifiers [Chakrabarti et al., 1997]

and neural networks [Wiener et al., 1995, Weigend et al., 1999]. Dumais and Chen

compared the two local approaches, pachinko machine and probabilistic, and found no

difference in performance [Dumais and Chen, 2000]. Since pachinko machine is much

more efficient, it is usually the choice in local approaches. Moreover, Mitchell [Mitchell,

1998] has proved that if we use the same probabilistic classifier, e.g. Naive Bayes, for

hierarchical and “flat” approaches, the probability terms are estimated using a maximum

Previous work 30

Figure 3.3: Error-correcting hierarchical method by Wibowo and Williams (2002). El-
lipses in bold represent the categories assigned to the instance by a classifier at each level
of the hierarchy; the ellipse with an arrow pointing to it is chosen as the final decision.

likelihood estimator, and the documents are represented using the same feature sets at

each level of the hierarchy, then the probabilistic hierarchical classifier is equivalent to

the standard non-hierarchical classifier.

An alternative local approach is Error-Correcting Codes (ECOC) [Ghani, 2000]. In

this work the author makes some of the code bits to represent the high-level categories,

but it results in reduced column separation and, thus, worse classification performance.

There has been some effort in the research community to cope with one of the major

problems of the local hierarchical approach: high-level error recovering. Cheng and

colleagues propose two methods [Cheng et al., 2001]. The first one is a pachinko machine

with the possibility to return to the high-confidence ancestor node a few levels back if

the classification probability drops below a given threshold. The second approach uses

three different classification algorithms, two of which are standard pachinko machines

with different feature sets and the third one is a classifier that dynamically skips some

levels in the hierarchy. The decision is then made by the majority vote. Skipping the

levels in a sense is a compromise between the hierarchical and “flat” approaches that

can reduce the high-level errors. In the paper by Wibowo and Williams [Wibowo and

Williams, 2002b] several methods are proposed, where “flat” classification is performed

at each level of a class hierarchy and the most probable category is chosen if its parent is

also the most probable category at the level above; otherwise the best parent category is

selected (see Figure 3.3). Shifting the choice of a category higher in the hierarchy gives

us a better chance of correct classification since, in general, classification at higher levels

is more accurate.

Most of previous research on hierarchical local categorization focus on text collections

with class hierarchies represented as trees and all documents assigned to leaf categories.

However, a large number of real-world hierarchical text categorization tasks involve class

hierarchies formed as true directed acyclic graphs (e.g. Gene Ontology), where documents

Previous work 31

true labels
ci c̄i

classified ci TPi FPi

as c̄i FNi TNi

Table 3.2: The contingency matrix for category ci ∈ C. c̄i denotes all categories in C
other than ci. TPi (true positives) is the number of documents correctly classified in ci,
TNi (true negatives) is the number of documents correctly classified as not belonging to
ci, FPi (false positives) is the number of documents incorrectly classified in ci, and FNi

(false negatives) is the number of documents incorrectly classified as not belonging to ci.

may belong to any category, internal or leaf. For that reason, in the present work we

extend the original hierarchical local approach pachinko machine to the general case of

DAG class hierarchies and internal class assignments (Chapter 4).

3.3 Performance evaluation

In this section we review the common “flat” and hierarchical evaluation measures. Later,

in Chapter 5 we argue that the existing measures are not particularly suitable for eval-

uation of a hierarchical text categorization system. Therefore, we propose our own

hierarchical measure that addresses the discussed issues (Chapter 5).

The performance of a text categorization system is usually measured in terms of

its effectiveness, i.e. its ability to produce correct classification. Some researchers also

compare the performance in terms of efficiency (for example, running time). Since text

collections are typically large, the efficiency of a system is very important in real-life

settings, yet the consistent comparisons can be tricky due to differences in computational

resources, algorithm implementation, etc.

There exist several evaluation metrics to assess the effectiveness of a categorization

system. The most common are accuracy, error rate, precision, recall, and combined

measures of precision and recall. Given the contingency matrix in Table 3.2, these

measures are defined as follows. For any category ci ∈ C,

• Accuracy gives the percentage of correct decisions made by a classifier:

Ai =
TPi + TNi

TPi + TNi + FPi + FNi

Previous work 32

• Its counterpart, error rate, gives the percentage of incorrect decisions:

Ei = 1− Ai =
FPi + FNi

TPi + TNi + FPi + FNi

• Precision is the percentage of correctly classified documents out of all documents

classified to category ci:

Pi =
TPi

TPi + FPi

• Recall is the percentage of correctly classified documents out of all documents in

category ci:

Ri =
TPi

TPi + FNi

Precision and recall are normally averaged over all categories in one of the following

ways:

• macroaverage: averaging individual categories’ precision/recall over all categories:

P =
∑

i Pi

|C| =
∑

i
TPi

TPi+FPi

|C| R =
∑

i Ri

|C| =
∑

i
TPi

TPi+FNi

|C| ,

where |C| is the total number of categories;

• microaverage: summing individual cells in contingency matrices, i.e. TP, FP, FN,

TN, and then calculating precision/recall for a global matrix:

P = TP
TP+FP =

∑
i TPi∑

i(TPi+FPi)
R = TP

TP+FN =
∑

i TPi∑
i(TPi+FNi)

Microaveraging puts more stress on the performance of high frequency categories while

macroaveraging weights the performance of all categories equally.

Neither precision nor recall is a good measure in isolation. For example, a trivial

classifier that classifies every document into a given class would get perfect recall (100%),

but its precision would be very low. In general, high values of recall can be obtained at

the cost of low precision and vice versa. As a result, a number of combination measures

have been used in text categorization research:

Previous work 33

• F-measure:

Fβ =
(β2 + 1) · P ·R
(β2 · P + R)

, β ∈ [0, +∞)

This measure has been proposed by van Rijsbergen [van Rijsbergen, 1979] and is

widely used. It represents the weighted harmonic mean of precision and recall,

which acts as a conservative average: for close values of precision and recall the

F-measure is near the average of the two numbers, while for rather distant values

the F-measure is shifted towards the smaller number. The standard value for β is

1 that gives precision and recall equal weights.

• 11-point average precision: the average precision for recall values 0, 0.1, . . ., 0.9, 1.

• Breakeven point: the value at which precision is equal to recall. This measure has

been proposed by Lewis [Lewis, 1992]. Recently, some significant drawbacks of this

measure have been discovered [Sebastiani, 2002]. First, often no parameter settings

would lead to equal values of precision and recall. In this situation the breakeven

has to be interpolated, which yields artificial and unreliable results. Second, equal

values of precision and recall are not necessarily the best and/or desirable point in

the performance. Therefore, this measure is rarely used nowadays.

Most studies on text categorization assume equal costs of different kinds of error: a

false positive (a document incorrectly assigned to a category) is considered as bad as a

false negative (a document incorrectly not assigned to a category). Yet, some applications

require non-unified misclassification costs. For example, classifying a cancerous tumor

as non-malignant and, as a result, not treating the patient right is a more severe error

than classifying a non-cancerous tumor as malignant. Hierarchical text categorization

calls for cost-sensitive learning since a hierarchical structure itself presents built-in costs.

For example, misclassifying a document in a sibling or parent of a correct category is

intuitively preferable to misclassifying it to a very distant node. However, most work on

hierarchical text categorization do not take into account the costs and evaluate systems

based on standard measures, accuracy and precision/recall [Chakrabarti et al., 1997,

Koller and Sahami, 1997,Dumais and Chen, 2000].

Only a few researchers noted that hierarchical categorization systems cannot be eval-

uated in a standard, “flat” way and, therefore, require special metrics. The first who

pointed out the need of non-unified error costs were Wang and colleagues. In their

work they assume that a set of misclassification costs for all category pairs B(ci, cj) is

given, and they optimize their association rule based classifier to minimize the overall

Previous work 34

distance = 0 distance = 1 distance = 2

Figure 3.4: Distance-based hierarchical measure. The solid ellipse represents the real
category of a test instance; the ellipse in bold (with an arrow pointing to it) represents
the category assigned to the instance by a classifier; edges in bold represent the short-
est (undirected) path between the real and assigned categories or, in other words, the
distance-based error.

cost [Wang et al., 1999]. As a possible choice for misclassification costs they propose to

use the distance between nodes representing categories in a hierarchical tree (see Fig-

ure 3.4). The distance between a correct and assigned category, distance(ci, cj), is defined

as the length of the shortest (undirected) path from node ci to node cj in a hierarchical

graph. The same distance-based evaluation measure is used by Dekel et al. [Dekel et al.,

2004].

In their subsequent work Wang and colleagues replace distance-based costs with

similarity-based costs [Wang et al., 2001]. The similarity of two categories is measured

as the similarity of the sets of documents belonging to the categories. Multi-label cat-

egorization is assumed, and the misclassification error between two sets of categories,

assigned to a document by a classifier (C ′
i) and the real categories (Ci), is calculated as

the normalized difference of the coverage of the two sets:

E(Ci, C
′
i) =

|Cover(C ′
i)− Cover(Ci)|+ |Cover(Ci)− Cover(C ′

i)|
|Cover(Ci) ∪ Cover(C ′

i)|
,

where coverage of a category set Cover(Ci) include all documents that are labeled with

the categories from the set or with the categories whose ancestors are in the set.

Itskevitch extends Wang and colleagues’ work introducing probabilistic hierarchical

measure based on the distance between categories in a hierarchical tree [Itskevitch, 2001].

Since a document can be classified into several categories (multi-label categorization),

the probabilistic score of a classifier on a document di is summed over all categories

assigned to di:

A(di) =
∑

j

Aj(di),

where Aj(di) is calculated based on prediction probabilities and distances between correct

Previous work 35

and assigned categories:

Aj(di) =




− P (cj |di)

distance(ci,cj)
for distance(ci, cj) = 1, 2, . . . , Dacc

P (cj|di)log2 distance(ci, cj) for distance(ci, cj) = Dacc + 1, . . . , Dmax

Here Dmax denotes the maximum distance between two categories in a hierarchy and

Dacc denotes the maximum acceptable distance. Distances in a hierarchy are increased

by 1 to avoid zero division. Overall score values range from −1 to log2 Dmax with −1

being the best value.

Blockeel et al. also use a measure based on the distance between categories, but

consider the weights for the edges of a hierarchy tree (see Figure 3.5a) [Blockeel et al.,

2002]. The weights decrease exponentially with depth. Cai and Hofmann propose a more

general measure based on a given set of user defined misclassification costs: cost1(v) ≥ 0

is the cost of assigning an item di ∈ Offspring(v) to w /∈ Offspring(v), cost2(v) ≥ 0

is the cost of assigning an item di /∈ Offspring(v) to w ∈ Offspring(v) [Cai and

Hofmann, 2004]. Then, the overall loss is computed as the sum of these costs for nodes

in the symmetric difference of the ancestor sets of the real and predicted category:

∆(ci, cj) =
∑

v∈Ancestors(ci),v /∈Ancestors(cj)

cost1(v) +
∑

v/∈Ancestors(ci),v∈Ancestors(cj)

cost2(v).

For uniform costs, this formula reduces to the standard distance-based error.

Another measure, weighted penalty, is also suggested by Blockeel et al. [Blockeel et al.,

2002]. Here the nodes of the tree have weights (deeper nodes have smaller weights), and

the distance between two nodes is calculated as the weight of their deepest common

ancestor (see Figure 3.5b). Tsochantaridis et al. use a variant of this measure with

weights defined as the height of a node in a hierarchical tree [Tsochantaridis et al., 2004].

Semantic similarity [Lord et al., 2003] can be seen as an extension of such a measure

for the general case of a DAG hierarchy. The semantic similarity measure is based on

the minimal weight over all common ancestors of the two nodes. This measure has

been specifically designed for the Gene Ontology. The weights are calculated as the

probabilities of a category (or any of its descendant nodes) occurrence in given data.

Sun and Lim propose their own category similarity and distance-based measures for

hierarchical text categorization [Sun and Lim, 2001]. Their category similarity CS mea-

sure is based on the content of documents comprising the categories and is computed

as the cosine similarity between the feature vectors of two categories. The distance be-

Previous work 36

0.75 0.75

0.56 0.56

0.560.56

0.75 DCA

distance = 0.56 + 0.75 + 0.75 + 0.56 = 2.62 distance = weigth(DCA) = 0.75

a) b)

Figure 3.5: Weighted distance-based hierarchical measure. The solid ellipse represents
the real category of a test instance; the ellipse in bold (with an arrow pointing to it)
represents the category assigned to the instance by a classifier; edges in bold represent the
shortest path between the real and assigned categories. In figure a) edges have weights
that decrease with depth. The distance-based error is the sum of all weights on the
shortest path between the real and assigned categories. In figure b) nodes have weights
that decrease with depth. The distance-based error is the weight of the deepest common
ancestor of the real and assigned categories.

tween two categories is the shortest distance between corresponding nodes in a hierarchy,

similar to the one by Wang et al. Then, based on these measures, category similarity

and distance between categories, they modify the standard measures, precision/recall

and accuracy/error. They consider misclassification as being partly correct depending

on how close the real and assigned categories are and add contributions from FP and FN

to correct decisions (TP):

Ai = TPi+TNi+FPConi+FNConi

TPi+TNi+FPi+FNi
Ei = FPi+FNi−FPConi−FNConi

TPi+TNi+FPi+FNi

Pi = max(0,TPi+FPConi+FNConi)
TPi+FPi+FNConi

Ri = max(0,TPi+FPConi+FNConi)
TPi+FNi+FPConi

For category similarity based measures, the contribution of document dj from FP(FN)

to class ci is defined as

Con(dj, ci) =

∑
k(CS(ci, ck)− ACS)

1− ACS
,

where summation is done over all document categories (for FPCon) or over all categories

assigned to a document (for FNCon) and the average category similarity ACS is defined

as ACS =
2·
∑n

i=1

∑n

k=i+1
CS(ci,ck)

n·(n−1)
.

For distance based measures, the contribution of document dj from FP(FN) to class

ci is defined as

Con(dj, ci) =
∑

k

(
1− distance(ci, ck)

Dacc

)
,

Previous work 37

P = 1/3 R = 1/1 P = 0 R = 0

Figure 3.6: Hierarchical measure proposed by Ipeirotis et al. (2001). The solid ellipse
represents the real category of a test instance; the ellipse in bold with an arrow pointing
to it represents the category assigned to the instance by a classifier. Both real and
assigned category sets are expanded to include all the descendant nodes. Then precision
is calculated as the percentage of the overlap of the two sets in the total number of the
assigned categories including the descendants, and recall is the percentage of the overlap
in the total number of real categories including the descendants.

where summation is done over all document categories (for FPCon) or over all categories

assigned to a document (for FNCon). Both types of contributions can be positive and

negative and are restricted to the range [−1, 1].

An unusual approach to evaluation has been proposed by Ipeirotis and colleagues

[Ipeirotis et al., 2001]. Instead of measuring distance or content similarity of two category

sets, correct Ci and predicted C ′
i, they measure the overlap in subtrees induced by the

category sets (see Figure 3.6):

P =
|Expanded(Ci) ∩ Expanded(C ′

i)|
|Expanded(C ′

i)|

R =
|Expanded(Ci) ∩ Expanded(C ′

i)|
|Expanded(Ci)| ,

where Expanded(Ci) = {ci ∈ C|ci ∈ Ci or ∃cj ∈ Ci : cj ∈ Ancestors(ci)}.
Evidently, a variety of hierarchical evaluation measures has been proposed to date.

These measures try to move away from the conventional “flat” techniques and capture

some of the specifics of hierarchical classification. Unfortunately, there are no well estab-

lished criteria on what aspects of hierarchical information are the most significant and

therefore, should be addressed in an evaluation measure. This is reflected in the diver-

sity of the proposed techniques. In present work (Chapter 5), we overcome this problem

by formulating the natural, intuitive characteristics we expect a hierarchical evaluation

measure to exhibit. We compare the existing hierarchical and non-hierarchical measures

Previous work 38

based on those characteristics and show that none of them surpasses all the criteria. Con-

sequently, we propose a new hierarchical measure that possesses all the required proper-

ties. Furthermore, we compare our new measure with the conventional “flat” measures

based on the concepts of consistency and discriminancy [Huang and Ling, 2005], the first

technique to systematically compare classifier performance measures.

3.4 Applications

Most of the research ideas described in previous sections were tested on classical text

corpora Reuters-21578 (Reuters-22173)5 and 20-newsgroups [Lang, 1995] and different

subsets of real-life web directories Yahoo! and DMOZ6. Other real-life text collections

with built-in hierarchies include US Patent database7, ACM Digital Library8, LookSmart

Web directory9, and biomedical articles OHSUMED [Hersh et al., 1994].

In addition to this extensive set of text data, hierarchical text categorization has

been successfully applied to other domains. Email classification is a subdomain of text

categorization where topic hierarchies are often present [Agrawal et al., 2000, Itskevitch,

2001, Zhdanova and Shishkin, 2002]. Many users organize (or would like to organize)

their incoming email into a hierarchy of folders. Also, an automatic forwarding system

can have the forwarding addresses organized in a hierarchy, for example by department.

On the web there exist various topic hierarchies in the form of web directories that

can be used not only to classify web pages but also to classify web databases. There

are many web-accessible databases, such as Medline or ZDNet Product Review10, whose

content is only accessible through search interfaces. For these resources, a special kind

of categorization, database categorization is needed [Ipeirotis et al., 2001].

Another interesting application of hierarchical text categorization is a user interface

for search engines [Chen and Dumais, 2000,Lin et al., 2002]. Instead of returning a long

flat list of documents that match a user’s query, these systems return the search results

organized into an existing topic hierarchy. Such result presentation greatly helps users

to quickly find the information they need [Chen and Dumais, 2000]. This is achieved

by simply classifying the results returned by a search engine into a predefined topic

5http://www.daviddlewis.com/resources/testcollections/reuters21578/
6http://www.dmoz.com/
7http://www.uspto.gov/
8http://portal.acm.org/dl.cfm
9http://www.looksmart.com/

10http://reviews-zdnet.com.com/

Previous work 39

hierarchy [Chen and Dumais, 2000]. However, a more efficient approach is to perform

search in two steps: first, the categories that match a user’s query are identified and then,

documents only from these categories that match the query are presented to the user [Lin

et al., 2002]. The same approach can be applied to personalization systems where the

search results are filtered and re-ranked according to a user’s preferences organized in a

topic hierarchy, and then presented in a hierarchical structure [Pretschner and Gauch,

1999,Chen et al., 2002].

Hierarchical text categorization can be useful for question answering [Li and Roth,

2002]. Before an automatic system attempts to answer a free form factual question from

a given large collection of texts, it may be useful to first categorize the question into one

of the semantic types from a given type hierarchy. For example, given the question “Who

was the first female astronaut?” we know that the required answer is a person (or group

of people) because of “who” and more specifically, that it is a woman. These semantic

categories provide some constraints on the types of answers that should be found at later

stages of the question answering process.

3.5 Text learning in bioinformatics

In this work, in addition to testing our new ideas on hierarchical learning and evaluation

on classical text corpora, we explore the application of hierarchical text categorization to

molecular biology. Computational methods have been applied in life sciences for several

decades now. Moreover, a new discipline, bioinformatics, has emerged in the mid-1980s.

Roughly speaking, bioinformatics is a merger of computer science and biology. It deals

with storing, analyzing, and visualizing any kind of biological data.

More recently, an advantage of text analysis in bioinformatics has been recognized.

A vast amount of biological and medical knowledge has been accumulated in scientific

journal publications. The largest public corpus of biological literature is the database

of the National Library of Medicine (NLM), Medline. It has an online access through

PubMed11, a service by the National Center for Biotechnology Information (NCBI) at the

National Institutes of Health (NIH). PubMed includes bibliographic citations and author

abstracts from more than 4,600 biomedical journals published in the United States and

70 other countries. It contains over 15 million citations dating back to the 1950s. New

citations are added on a weekly basis.

11http://www.ncbi.nih.gov/entrez/query.fcgi

Previous work 40

This literature is essential for life scientists at all stages of their research, from plan-

ning and performing experiments to analyzing and putting in the context the results.

Manually processing such a large corpus is tedious and very time-consuming; therefore,

automatic methods of text analysis are needed. As a result, data mining, machine learn-

ing, and natural language processing (NLP) techniques have been applied to a wide range

of problems in bioinformatics: functional annotation of genes and proteins, finding gene-

gene or protein-protein interactions, knowledge discovery, to name a few [Yandell and

Majoros, 2002,de Bruijn and Martin, 2002]. The recently developed BLIMP (Biomedical

LIterature and text Mining Publications)12 service collects all research publications in

the field of biomedical literature mining and represents a valuable source of information

on this topic. Below we describe a few classical text-related bioinformatics tasks and

some of the solutions proposed so far by AI researchers.

3.5.1 Information retrieval

Information retrieval (IR) in bioinformatics has the same goal as general information

retrieval: to select documents relevant to a user’s request from a large collection of bi-

ological and medical texts. In some cases, an IR system is also required to rank the

retrieved documents according to their degree of relevancy. A user’s request can be for-

mulated as a query, i.e. words that should or should not appear in the retrieved papers,

or a set of papers that are known to be relevant, i.e. the training set. NCBI provides

an engine, PubMed, to retrieve documents from Medline according to a user’s query.

While this mechanism allows users to reduce significantly the number of documents for

subsequent manual processing, formulating a good query requires some skill and experi-

ence. The main challenge in query composition is that authors use diverse terminology

and nomenclatures to describe biological entities. This problem can be addressed with

machine learning techniques that can automatically distinguish the words that are highly

representative of a given topic from the irrelevant terms by observing example documents

in the training set [Dobrokhotov et al., 2003].

Information retrieval is a fundamental part of any life science research. In addition

to helping users efficiently search for relevant information, it also can help database

curators to select the most promising documents for reviewing. There has been some

effort to structure the accumulated biological knowledge. The resulting databases, such

as SGD [Dolinski et al., 2003] and Flybase [Consortium, 2002], are currently manually

12http://blimp.cs.queensu.ca/

Previous work 41

replenished by professional curators who examine journal articles and extract new facts

to annotate the entries of the database. Automatically selecting the articles that are

worth reviewing will be highly beneficial for curators.

To generate more interest in this problem and evaluate the existing approaches, sev-

eral international competitions were organized. The well-known Text Retrieval Confer-

ence (TREC)13, whose goal is to encourage and support research in general information

retrieval by providing the infrastructure for large-scale evaluation of the current IR tech-

niques, has been organizing a special Genomics Track for the past few years. At the

first TREC Genomics competition in 2003, the main IR task was the following: from a

given set of Medline abstracts, retrieve documents that focus on the basic biology of a

given gene or its protein products, i.e. location, structure, genetics, and functions, from a

given organism [Hersh and Bhupatiraju, 2003]. In 2004, the focus of the Genomics Track

shifted towards the conventional searching, i.e. the search topics were developed from

the information needs of real biologists [Hersh et al., 2004]. Similarly, in the TREC 2005

competition, the search topics were collected from biologists, yet were more structured

than the mostly free-form topics of the 2004 track [Hersh et al., 2005]. The idea was to

provide better defined, while still realistic, queries to make easier for the IR systems the

use of other resources, such as ontologies or databases. Another competition, the KDD

Challenge Cup 200214 had one of its tasks to rank the documents according to their

relevancy to the FlyBase database [Yeh et al., 2003]. A document was considered rele-

vant if it contained experimental evidence for gene products (RNA and proteins). This

competition showed that fully automated systems based on standard machine learning

approaches are still inferior to manually devised pattern-matching rules.

3.5.2 Summarization

Summarization in general is the task of producing a short summary of a given document

or a set of documents. The summary should convey the general idea of the document

and its length should be just a fraction of the length of the original document. The

simplest version of summaries is keywords, which usually does not require a deep natural

language analysis. In bioinformatics summarization can be a very useful tool presenting

a user short summaries of large sets of articles. Andrade and Bork [Andrade and Bork,

2000] present a statistical approach to extracting keywords for a set of Medline articles

13http://trec.nist.gov/
14http://www.biostat.wisc.edu/∼craven/kddcup/tasks.html

Previous work 42

describing a particular disease from the OMIM (Online Mendelian Inheritance in Man)

database [McKusick, 1994]. Another statistical method by Shatkay and colleagues pro-

duces a list of keywords characterizing the literature on a specific gene [Shatkay et al.,

2000]. Keywords for a set of articles represent a set of words highly relevant to a given

topic, e.g. a disease or a gene. Such keywords allow a user to quickly assess the content

of a large set of papers of interest.

3.5.3 Named entity recognition

The goal of this task is to recognize biological entities, such as genes and proteins, in

the text. The straightforward solution to this task is to use a dictionary of these terms.

However, this solution is limited since not always such a dictionary exists, and even when

it does exist it is not complete. New genes/proteins are being discovered and named on

a daily basis. In addition, the lack in naming conventions leads to very inconsistent use

of gene/protein names. For example, most genes have several names and symbols to

represent them; one symbol can be used to represent different genes; some gene symbols

coincide with common English words, such as a, is, her, can, that are considered stop

words in text learning and usually removed at the preprocessing step.

A number of automatic and semi-automatic techniques have been applied to this

problem. For more standardized subdomains, like protein names, there exist some char-

acter clues, such as capital letters and numerical and special symbols, that help recognize

the biological terms. These clues along with some hand-crafted domain-specific rules can

produce a very accurate prediction system [Fukuda et al., 1998]. For other, less standard-

ized subdomains more complex algorithms are required. Proux and colleagues combine a

part-of-speech (POS) tagger with lexical and contextual hand-crafted rules and domain-

specific dictionaries to detect gene names from sentences extracted from the Flybase

database with 94.4% recall and 91.4% precision [Proux et al., 1998].

To avoid manual construction of domain-specific rules for every subtask at hand, some

researchers apply machine learning techniques to learn the contextual rules automatically.

Collier et al. adapt Hidden Markov Models (HMM) to predict biological named entities

based on the sequences of two adjacent words (bi-grams) and their characteristics such

as presence of digits, capital letters and so on [Collier et al., 2000]. Statistical supervised

methods are used in the work by Nobata et al. to recognize biological terms [Nobata et al.,

1999]. While these techniques are much more scalable and generalizable, their accuracy

(F-score of 0.3 . . . 0.7) is not yet comparable to that of hand-crafted rules. Bunescu et

Previous work 43

al. compare several machine learning methods, such as rule learners, Support Vector

Machines and HMM, with hand-crafted rules on the dataset of human gene names and

show that automatic methods can outperform the manually created classifiers [Bunescu

et al., 2003]. However, in this study the authors use rules initially made for genes of

other organisms, and applying them on human genes makes the comparison unfair since

the name conventions differ significantly from one organism to another.

3.5.4 Entity relationship detection

This task consists of identifying groups of biological entities and their relations, such

as protein-protein interactions. The most common approach to this problem is finding

entities that frequently co-occur in the same sentence or abstract [Stapley and Benoit,

2000, Jenssen et al., 2001, Stephens et al., 2001,Cooper, 2003]. The experimental stud-

ies give evidence that co-occurrence usually correctly reflects meaningful relationships

between entities. As usual, there is a trade-off between precision and recall: looking

for co-occurrences at the sentence level typically increases precision while looking for

co-occurrences at the abstract level increases recall [Cooper, 2003]. To increase preci-

sion researchers employed statistical measures to estimate if the co-occurrence frequen-

cies are significant enough to represent a meaningful relationship [Stapley and Benoit,

2000,Stephens et al., 2001,Cooper, 2003]. These methods are based on the assumption

of redundancy in the biological texts: the true related entities would appear together in

several documents.

Another approach to increase the precision of finding related entities is to go deeper

into the sentence analysis. Researchers apply shallow or deep sentence parsing and look

for hand-crafted linguistic templates built around specific verbs representing interactions

[Sekimizu et al., 1998, Blaschke et al., 1999, Proux et al., 2000, Thomas et al., 2000].

Subjects and objects of such verbs, if entities of interest, give a pair of related entities

with the type of interaction indicated by the verb. Bunescu et al. design a completely

automatic method of learning rules to recognize protein-protein interactions that can

achieve higher precision than hand-crafted rules at cost of lower recall or higher recall at

cost of lower precision [Bunescu et al., 2003]. Since automatic rule learning requires deep

semantic analysis, which is computationally expensive, Nédellec et al. propose to select

the relevant fragments of texts first, and then apply extensive NLP techniques only on

them [Nédellec et al., 2001]. They classify sentences as containing potentially relevant

information with standard machine learning algorithms, C4.5 and Naive Bayes. Given

Previous work 44

the large sparseness of the facts to be extracted in the biomedical domain, this approach

can significantly reduce the amount of data that need to be processed at the next steps,

semantic-conceptual analysis and pattern matching.

3.5.5 Functional annotation

One of the main tasks in molecular biology is to identify the functions of genes and

their products. Functions of thousands of gene products for many organisms have been

identified and are described in the literature. However, the vocabulary used to describe

the functions is not standardized and automatically retrieving the gene functions from

literature is not obvious. There have been several attempts to standardize the vocabulary

(for example, Gene Ontology (GO) [Ashburner et al., 2000]). Yet, mixed terminology is

still present in articles, especially in older ones.

The text-related approach to functional annotation in general corresponds to classify-

ing articles describing a particular gene into one or several functional categories. Then,

the discovered categories are assigned to the gene. The straightforward technique of

classifying Medline abstracts into GO terms using standard machine learning algorithms

(maximum entropy, Naive Bayes, and nearest neighbor) has been proposed by Raychaud-

huri et al. and showed promising results [Raychaudhuri et al., 2002]. After each article

associated with a gene has been classified into GO terms, the gene function is chosen

based on a weighted voting scheme. In this work, the experiments are performed only

on 21 chosen genes. Catona and colleagues ran an extended set of experiments covering

all 6295 human proteins annotated by that time in the Swiss-Prot database15 [Catona

et al., 2004]. Similar approach is employed in the Euclid system [Tamames et al., 1998].

They use a simple keyword-based classifier to assign functions to sequences from the

Swiss-Prot database based on the detailed free-text functional annotations provided by

human experts.

Functional annotation from biomedical literature has also been the focus of the

BioCreAtIvE - Critical Assessment of Information Extraction systems in Biology (2004)16

competition (task 2). The following task has been presented: for a given document and

a given protein the participating systems have to identify a Gene Ontology code that

corresponds to the protein’s functionality described in the document. In addition, they

15Swiss-Prot database is an annotated database of protein sequences maintained by the
Swiss Institute for Bioinformatics (SIB) and the European Bioinformatics Institute (EBI)
(http://www.ebi.ac.uk/swissprot/).

16http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.html

Previous work 45

have to provide a text segment that supports such an annotation. Because of the sec-

ond part, most of the participants employ NLP approaches to this task. Some systems

try to match Gene Ontology terms with words occurring in a document and return the

sentence with maximum matching score [Couto et al., 2005,Ehrler et al., 2005]. Other

two systems match not only Gene Ontology terms, but also protein names, along with

as many their lexical variants and synonyms as possible [Krallinger et al., 2005, Kry-

molowski et al., 2004]. Chiang and Yu enrich this simple matching with shallow parsing

and manually constructed phrasal patterns [Chiang and Yu, 2004]. Three systems present

machine learning approaches to the task. Rice et al. employ Support Vector Machines

on carefully constructed feature vectors representing given documents [Rice et al., 2005].

Another system learns two statistical models. The first one identifies what Gene Ontol-

ogy terms are relevant to a given document while the second one decides which of these

GO terms should be returned as annotations for a given protein [Ray and Craven, 2005].

All of the approaches mentioned above employ the hierarchical information present in

the Gene Ontology at most to the extent of populating training data of some node with

the examples from its descendant nodes. Other than that, they address the task in the

“flat” manner classifying each document into one or several GO codes from a set of

available codes. Only one study recognizes this problem as a hierarchical one [Verspoor

et al., 2005]. This work presents a system that first identifies the relevant GO terms for

a given document through a direct matching or presence of words that often co-occur

with GO terms. Then, it employs the hierarchical approach called Gene Ontology Cat-

egorizer [Joslyn, 2004]. This approach finds the best set of GO nodes that summarizes

the relevant terms in the GO graph.

Several researchers address the problem of verifying if a given set of genes shares

a function [Shatkay et al., 2000,Raychaudhuri et al., 2003,Raychaudhuri and Altman,

2003]. This task is especially important in microarray analysis (see Section 3.5.6). The

usual practice in microarray analysis is to cluster genes by their expression profiles. If

genes in a cluster share functionality, the cluster is considered interesting and is a good

candidate for the follow-up studies. Shared functionality verification is based on the

assumption that genes share functionality if the articles describing these genes share the

content. So, the suggested approach works as follows [Raychaudhuri and Altman, 2003].

Suppose, we are given a set of genes G = {gj}, j = 1 . . . N . We look at the sets of

articles Di similar in content to a document di that describes a particular gene gi ∈ G.

Next, for each gene gi ∈ G we calculate how many of these documents Di also refer to

other genes in the set G. Let’s say that the number of such documents is ni. Then, if

Previous work 46

the numbers ni, i = 1 . . . N are significantly larger than what would be expected for a

random group of genes, then the group of interest is considered functionally coherent.

Masys et al. apply a similar idea to biomedical terms assigned to documents describing a

given set of genes [Masys et al., 2001]. In the Medline database articles are indexed with

terms from biological ontologies such as Medical Subject Headings (MeSH) and Enzyme

Commission (EC) codes. Masys et al. look for the MeSH and EC terms assigned to

documents that describe genes from a given set. Figure 3.7 shows an example of such

MeSH term analysis. Shown are the disease-related MeSH terms for genes predictive of

Acute Lymphoblastic Leukemia as was identified in the comparative study of two types

of leukemia by Golub et al. [Golub et al., 1999]. The terms form a sub-hierarchy of

the original MeSH ontology. Numbers in parentheses beside each term represent the

total number of matching gene and Medline citation records associated with the term

and are linked to the information on the corresponding genes and Medline publications.

Numbers in curly brackets are P-value estimates representing likelihood that this number

of term matches would occur by chance. Such analysis can show not only whether a set

of genes shares functionality, but also what functionality (expressed in MeSH/EC terms)

it shares.

King et al. exploit the observation that some functions are related to each other and if

a gene is assigned one function it should probably be assigned the other too [King et al.,

2003]. They model the relations between GO terms with standard machine learning

algorithms: decision trees and Bayesian networks.

There has also been some work on predicting gene/protein functions by sequence

similarity analysis. Often proteins that have similar amino acid sequences share a func-

tion. Renner and Aszódi employ this dependency by scanning several gene and protein

databases to retrieve the annotations for genes/proteins with sequences similar to those

of a novel gene [Renner and Aszódi, 2000]. Then, they group the annotations with similar

keywords into clusters to reflect different functions that the protein has.

3.5.6 Gene expression analysis

With the invention of microarrays gene expression analysis has gone to a new level.

Evidently, genes and their products in any living organism interact with each other in

complex ways. However, with traditional methods in molecular biology, the expression

level of only one gene at a time could be measured; therefore, the whole picture was hard

to obtain. DNA microarrays is a technology that allows measuring the expression level

Previous work 47

Virus Diseases (2) {<.001}

Neoplasms (10) {<.001}

Neoplasms by Histologic Type (8) {<.001}

Leukemia (8) {<.001}

Leukemia, Lymphocytic (6) {<.001}

Leukemia, B-Cell (2) {<.001}

Leukemia, B-Cell, Acute (2) {<.001}

Leukemia, Lymphocytic, Acute (2) {<.001}

Leukemia, B-Cell, Acute (2) {<.001}

Leukemia, T-Cell (2) {<.001}

Precancerous Conditions (2) {<.001}

Preleukemia (2) {<.001}

Nervous System Diseases (4) {<.001}

Autoimmune Diseases of the Nervous System (2) {<.001}

Demyelinating Autoimmune Diseases, CNS (2) {<.001}

Multiple Sclerosis (2) {<.001}

Demyelinating Diseases (2) {<.001}

Demyelinating Autoimmune Diseases, CNS (2) {<.001}

Multiple Sclerosis (2) {<.001}

Female Genital Diseases and Pregnancy Complications (1) {<.001}

Genital Diseases, Female (1) {<.001}

Infertility (1) {<.001}

Infertility, Female (1) {<.001}

Hemic and Lymphatic Diseases (2) {<.01}

Hematologic Diseases (2) {<.001}

Preleukemia (2) {<.001}

Neonatal Diseases and Abnormalities (5) {<.001}

Hereditary Diseases (3) {<.001}

Werner Syndrome (1) {<.001}

Infant, Newborn, Diseases (2) {<.001}

Severe Combined Immunodeficiency (2) {<.001}

Immunologic Diseases (8) {<.001}

Autoimmune Diseases (2) {<.001}

Autoimmune Diseases of the Nervous System (2) {<.001}

Demyelinating Autoimmune Diseases, CNS (2) {<.001}

Multiple Sclerosis (2) {<.001}

Immunologic Deficiency Syndromes (6) {<.001}

Common Variable Immunodeficiency (2) {<.001}

Severe Combined Immunodeficiency (2) {<.001}

Pathological Conditions, Signs and Symptoms (1) {<.01}

Pathologic Processes (1) {<.001}

Disease Attributes (1) {<.001}

Acute Disease (1) {<.001}

Figure 3.7: An example of concept hierarchy matches by Masys et al. (2001). Shown are
disease-related MeSH terms for Acute Lymphoblastic Leukemia predictive genes iden-
tified by Golub et al. [Golub et al., 1999]. Numbers in parentheses represent the total
number of matching records. Numbers in curly brackets are P-value estimates represent-
ing likelihood that this number of term matches would occur by chance.

Previous work 48

of thousands of genes simultaneously. The purpose of such experiments is to learn the

behavior of genes under different conditions (e.g. cell starvation, heat shock), in different

tissue samples (e.g. different cancer types), or at different time points during a biological

process (e.g. cell cycle). Gene expression analysis then facilitates function prediction

for poorly characterized genes, discovery of potential drug targets, and differentiation

between types of diseases.

While new microarray data are obtained on a daily basis, their analysis remains a

complex task. Experiments of such scale are very difficult to analyze manually. Normally,

bioinformaticists apply various techniques, such as clustering, to produce a manageable

number of groups of genes with similar expression profiles. Eisen et al. experimentally

showed that gene clusters tend to correspond to functional categories and, therefore, can

shed light on functions of novel or poorly characterized genes [Eisen et al., 1998].

There exist a wide variety of unsupervised clustering techniques that can be applied

to gene expression analysis [Shamir and Sharan, 2002]. The algorithms can be divided

into hierarchical and centroid algorithms. Hierarchical algorithms produce a hierarchy

of clusters where each cluster consists of its children clusters. The number of children is

typically two. The hierarchical algorithms are agglomerative if they work in a bottom-up

manner starting with clusters of single objects and recursively merging them into larger

clusters. Divisive hierarchical algorithms, on the contrary, work in a top-down manner

starting with one cluster containing all objects and recursively dividing it into smaller

clusters.

Centroid algorithms generally require the specification of the number of clusters k

to produce. They start with k random or specifically chosen points called centroids and

group the objects around these points. Then they iteratively adjust the positions of the

centroids and re-calculate the cluster membership for all objects until a certain criterion

is optimized. K-means and Self-Organizing Maps (SOM) are the most common centroid

algorithms.

Most clustering algorithms require the specification of a distance between a pair of

objects. Distance measures can emphasize only positive correlations between objects,

both positive and negative correlations, or more complex relationships making use of

mutual information. Some of the common distance measures are presented in Table 3.3.

The most commonly used measure is Euclidean distance. It is a simple and intuitive

measure that represents the shortest distance between two points (see Figure 3.8). It

has a number of variations that differ from the original formula by attribute weights

wi. In standard Euclidean distance all attributes have equal weights of 1. However,

Previous work 49

Distance Measure Mathematical Form

Euclidean D(x, y) =
√∑

wi(xi − yi)2

Euclidean (inverse of variance) D(x, y) =
√∑

1
σ2

i

(xi − yi)2

Euclidean (inverse of max deviation) D(x, y) =
√∑

1
max(xi−yi)2

(xi − yi)2

Euclidean (Clark) D(x, y) =
√∑

1
(xi+yi)2

(xi − yi)2

Minkowski D(x, y) = (
∑

wi |xi − yi|r)
1
r

Manhattan D(x, y) =
∑

wi |xi − yi|

Manhattan (attribute mean) D(x, y) =
∑

1
X̄i
|xi − yi|

Chebychev D(x, y) = max |xi − yi|

Pearson correlation rxy =
∑

(xi−x̄)(yi−ȳ)√∑
(xi−x̄)2

∑
(yi−ȳ)2

Table 3.3: Main functions for measuring distance in the clustering process. Here x̄
denotes the mean value of vector x; X̄i denotes the mean of the ith attribute of all data
points.

these weights can be set to the inverse of variance, the inverse of maximal deviation or

other values including user-defined. Minkowski distance is a generalization of Euclidean

distance where the exponent can be set to any user-defined value.

Manhattan distance represents the sum of the absolute distances between attribute

values of two vectors (see Figure 3.8). It also has several variants that differ in the way of

defining the attribute weights wi. Chebychev distance is similar to Manhattan distance

but it calculates the maximum absolute distance of two vectors (see Figure 3.8) instead

of the sum of absolute distances.

Another widely used measure is Pearson correlation. This measure shows correlation

between attribute values of two vectors with value of 1 for identical vectors and -1 for

perfect opposites. To get the distance between two vectors we can use 1 − r to capture

only positive correlations between vectors or 1−|r| to capture both positive and negative

correlations.

After genes have been grouped into clusters, each cluster has to be analyzed, in most

cases manually, to find subsets of genes with similar biological properties, i.e. genes that

share not only expression profiles, but also functionality. Such subsets of genes would

Previous work 50

x

y

d3

d1

d2

Figure 3.8: Distance measures used in clustering. d3 gives the Euclidean distance between
vectors x and y, d1 + d2 gives the Manhattan distance, and d1(d1 > d2) gives the
Chebychev distance.

represent the biologically meaningful chunks of information and will be the objects of

further studies. There have been some attempts on automating this process as well.

Speer and colleagues suggest a technique to automatically cluster given groups of genes

by their functional categories in the Gene Ontology [Speer et al., 2004a]. For this, they

apply a regular clustering algorithm with the distance function defined on the functional

space of the Gene Ontology. The distance between two GO annotations can be defined

as the distance between the two nodes in the GO graph, i.e. the length of the path

between the two nodes. In the case of multiple paths, the average or the minimal path

is used. The semantic similarity [Resnik, 1995, Lord et al., 2003] and its variants [Lin,

1998,Jiang and Conrath, 1998] have been suggested as information-theoretic alternative

methods to measure the similarity in the ontology. To calculate these measures, a set

of weights is required that are defined as the probabilities p(c) of encountering nodes

c′ ∈ Offspring(c) in data. These weights reflect the amount of information that a node

carries. The semantic similarity of two nodes ci and cj is the negative logarithm of their

common ancestor with the minimal weight:

sim(ci, cj) = maxc∈S(ci,cj)[−log(p(c))],

where S(ci, cj) = Ancestors(ci) ∩ Ancestors(cj) [Resnik, 1995, Lord et al., 2003]. Lin’s

variant of this measure additionally takes into account the weights of the query terms ci

and cj [Lin, 1998]:

sim(ci, cj) =
2 ·maxc∈S(ci,cj)[log(p(c))]

log(p(ci)) + log(p(cj))

Jiang and Conrath propose the distance measure based on the same idea [Jiang and

Previous work 51

Conrath, 1998]:

d(ci, cj) = 2 ·maxc∈S(ci,cj)[log(p(c))]− [log(p(ci)) + log(p(cj))].

Since a gene can have multiple annotations, the average (or maximum/minimum) simi-

larity/distance over all pairs of annotations of two genes is taken.

Background knowledge can also come useful as a judging criterion of a cluster quality:

clusters composed of genes participating in the same or closely related biological processes

are the first candidates for human analysis and possibly follow-up studies. Conventional

cluster quality measures, such as Silhouette index [Rousseeuw, 1987] and Davies-Bouldin

index [Davies and Bouldin, 1979], would evaluate cluster compactness and distinctness

in the functional space of the Gene Ontology if one of the functional distances defined

above is employed with these indices [Speer et al., 2005]. Another cluster quality mea-

sure, cluster stability [Famili et al., 2004], does not depend on the notion of distance

between genes and, therefore, can be applied here without any modifications. The same

techniques can be used to find the optimal clustering parameters, e.g. the number of clus-

ters, on given data [Bolshakova et al., 2005] or compare the results of different clustering

techniques. Alternatively, the mutual information between cluster membership and gene

function may play a role of a cluster quality measure [Gibbons and Roth, 2002]. If the

functional information is not readily available in databases, we can turn to the biomed-

ical literature. Several techniques determining the functional coherence of a group of

genes based on the similarity of the literature describing these genes have been proposed

recently (see Section 3.5.5).

Another interesting way of adding up the background knowledge is incorporating it

into the clustering process directly. Wang et al. experimentally show that high corre-

lation in gene expression profiles often implies strong functional similarity [Wang et al.,

2004]. However, microarray data are generally very noisy. As a result, cluster boundaries

might be arbitrary to some degree. Using another information source, such as functional

annotations, can help resolve these ambiguities and result in high-quality, biologically

meaningful clusters. For example, we can combine conventional distances defined on

expression data with functional distances defined on the Gene Ontology [Speer et al.,

2004b]. Hanisch et al. employ this idea to co-cluster gene expression data with biolog-

ical networks, namely metabolic reactions [Hanisch et al., 2002]. Another approach is

proposed by Liu and colleagues [Liu et al., 2004]. This work is focused on building a tree

of clusters grouping genes by their similarity in expression on a subset of experimental

Previous work 52

conditions. A child cluster has one more condition added comparing to its parent cluster.

In addition, the cluster tree is built in such a way that the cluster relationships reflect the

functional relationships of genes in the Gene Ontology. Again, if the background knowl-

edge is not available directly, the biomedical literature can be used instead. Glenisson et

al. exploit the above mentioned idea of distance combination, integrating gene expression

data with free-form textual information on the analyzed genes [Glenisson et al., 2003].

Raychaudhuri and colleagues also combine gene expression analysis and text analysis to

search for sets of genes with similar expression patterns and shared functionality [Ray-

chaudhuri et al., 2003]. They separate a group of genes with a linear projection in gene

expression data. Then, iteratively, starting from a given (possibly random) group of

genes, they refine the group to find the best group (local maximum) in terms of func-

tional similarity. To determine if the group of genes shares a common function they use

the biomedical literature and a statistical method described in Section 3.5.5.

Another direction in gene expression analysis is applying supervised learning methods

to classify expression patterns in a predefined set of classes [Brown et al., 1999,Hvidsten

et al., 2003]. For example, Hvidsten and colleagues design a rule-based system to classify

gene expression profiles into Gene Ontology codes to infer the functional properties of

the corresponding genes [Hvidsten et al., 2003]. Also, supervised learning techniques can

be applied to identify genes whose expressions are highly characteristic of the studied

conditions/tissues [Furey et al., 2000,Do and Poulet, 2003,Long and Vega, 2003]. In this

problem, genes become attributes, and conditions become classes. Then, any machine

learning algorithm can be applied to learn the subsets of genes that tell apart the condi-

tions. However, gene expression data pose a tremendous challenge for learning algorithms

as the data are generally characterized by a high level of noise and, more importantly,

an enormous number of attributes and an inadequate amount of training samples. In a

typical microarray study, expressions of a few thousands of genes (attributes) are mea-

sured in only a few tens or hundreds of samples. Therefore, Support Vector Machines is

a good candidate for this classification problem since it is very robust in noisy environ-

ments and efficient in high-dimensional feature spaces [Furey et al., 2000,Do and Poulet,

2003]. Alternatively, feature selection techniques can be brought into play to reduce the

dimensionality of the feature space yet preserving most of the information present in the

original data.

Previous work 53

3.5.7 Creating/maintaining knowledge databases

All the tasks mentioned above are essential steps in a global task of automatic or semi-

automatic creation and maintenance of biological databases [Craven and Kumlien, 1999].

One of the central goals of bioinformatics is to structure the biological knowledge accumu-

lated to date and store it in databases, so that it can be easily accessible by automatic

systems. Nowadays, most of the work on database creation and maintenance is done

manually, which requires significant resources in terms of experts’ time. To do this au-

tomatically, we have to produce a system capable of doing several tasks, for example

named entity recognition and entity relationship detection, or named entity recognition

and functional annotation. Another possibility is to assist experts in their annotation

work. For instance, Ohta and colleagues use information retrieval and summarization

modules along with a domain-specific dictionary construction to assist biologists in main-

taining the Transcription Factor database (TFDB) [Ohta et al., 1997].

3.5.8 Knowledge discovery

The ultimate goal of any science is scientific discovery, and there have been some work

that shows that certain discoveries in biology and medicine can be done automatically.

In the mid-80s, based on the literature analysis only, Swanson generated several novel

hypotheses related to the connection between disease syndromes and chemical substances

that were later confirmed experimentally. For example, he found a connection between

migraine and magnesium [Swanson, 1988] and between Raynaud’s syndrome and fatty

acids in fish oil [Swanson, 1986]. After this pioneering work several researchers continued

the studies in this direction. The general idea is to produce a graph where nodes represent

biological entities and edges represent the relations between the entities. Each relation

found in the literature becomes an edge in the graph. If two nodes are not connected

directly, but connected indirectly through other nodes, then they are possibly related to

each other, but this connection has not been discovered yet. Some works on protein-

protein interaction detection can be viewed as knowledge discovery processes since they

produce graphs of related proteins and can discover the relations between proteins not

explicitly present in literature [Blaschke et al., 1999, Stapley and Benoit, 2000, Jenssen

et al., 2001, Cooper, 2003]. Sehgal, Qui, and Srinivasan extend this to the network of

topics, where a topic can be any search specification (basically any PubMed query) and

is characterized by a set of documents related to the topic [Sehgal et al., 2003]. Two

topics are considered related if they share a number of documents or their documents are

Previous work 54

assigned similar MeSH terms. Their system is able to replicate some of the Swanson’s

discoveries.

Burhans and colleagues started a project to create a system that can reason as a hu-

man biologist [Burhans et al., 2003]. They represent the existing knowledge in the form

of a semantic network that can then be used to induce new hypotheses. However, the

process of translating the knowledge in a semantic network is now done mostly by hand,

which narrows significantly the applicability of the system in more general settings. Un-

like these researchers, Srihari et al. aim at automatic building of a probabilistic network

from information extracted from literature with some promise indicated by preliminary

experiments [Srihari et al., 2003].

Much of the text-related research in bioinformatics deals with hierarchically organized

data. For example, gene function nomenclature has been standardized as the Gene On-

tology hierarchy. Keywords describing an article or a group of related articles often form

a hierarchy as, for instance, MeSH terms used to annotate Medline articles. Neverthe-

less, hierarchical text categorization techniques have been rarely in use in this field. Our

research is aimed to change this situation and enhance the existing bioinformatics tech-

niques with additional knowledge of hierarchical relationships present among categories

(see Chapter 7).

Chapter 4

Hierarchical learning algorithms

In Section 2.3 we have introduced the notion of hierarchical consistency and the hier-

archical consistency requirement. We stated that for better understandability and in-

terpretability of classification results, a hierarchical classification system should produce

labeling consistent with a given category hierarchy. As has been shown in Section 3.2,

there exist two main approaches to hierarchical text categorization: global and local.

Local approaches naturally produce consistent classification since a category can be as-

signed to an instance only if this instance has been already classified into a parent of

the category. As we mentioned in Section 3.2.2, local approaches, especially pachinko

machine, have been the focus of several previous studies. However, most of these studies

worked on a special type of text collections where class hierarchies were designed as trees

and all instances belonged to leaf classes. Moreover, these studies utilized the conven-

tional “flat” evaluation measures that do not reward partially correct classification. As a

result, the pachinko machine method always classifies instances to the lowest level cate-

gories. In this work, we extend pachinko machine to handle cases where class hierarchies

are represented as directed acyclic graphs (DAGs) and internal category assignments are

accepted and rewarded.

Unlike local approaches, a global hierarchical algorithm has to be specifically designed

to produce consistent classification. We introduce one such global approach [Kiritchenko

et al., 2005b]. This is a general framework of converting a conventional “flat” learning al-

gorithm into a hierarchical one. In our experiments we used AdaBoost.MH [Schapire and

Singer, 1999] as the underlying learning approach. However, any conventional method

capable of performing multi-label classification can be used within this framework. We

selected AdaBoost.MH because of its robustness and high performance. The main idea

55

Hierarchical learning algorithms 56

Given: training set S = ((d1, C1), . . . , (dm, Cm)), where di ∈ D, Ci ⊆ C
unseen instance x ∈ D
hierarchy H = 〈C,≤〉

push(Queue, Root(H))

while(Queue is not empty) do:
c = pop(Queue)
if not Leaf(c,H) then

Ŝ = {(di, Ĉi): ∃(di, Ci) ∈ S, ∀ĉj ∈ Ĉi ∃cj ∈ Ci

ĉj ∈ Ancestors(cj) ∧ ĉj ∈ Children(c)}
predictor = learn classifier(Ŝ)

local labels = classify instance(predictor, x)

for each ci ∈ local labels do:
add(Labels, ci)
push(Queue, ci)

Return Labels.

Figure 4.1: Generalized hierarchical local approach for tree hierarchies.

of the algorithm is to transform an initial (single-label) task into a multi-label task by

expanding the label set of each example with the corresponding ancestor labels. By

expanding label sets we ensure that intermediate classes contain all examples from their

offspring nodes, in other words, that the initial labeling of training data is consistent with

a class hierarchy. Then, we apply a regular learning method such as AdaBoost.MH on the

multi-label data. Finally, re-labeling of inconsistently classified instances is performed

to satisfy the hierarchical consistency requirement. The method is simple and effective

and can be applied to any text categorization task with a class hierarchy represented as

a DAG.

4.1 Generalized hierarchical local approach

We present an extended version of the local hierarchical pachinko machine approach. This

extended version is capable of handling general cases where hierarchies are represented

as DAGs and instances can be classified into intermediate categories. We start with

a description of the simplified algorithm applicable only to hierarchical trees. Then,

we identify the problems that emerge when a class hierarchy is represented as a DAG.

We propose possible solutions to these problems and finally, we present the generalized

version of the local hierarchical approach.

The simplified version of the algorithm is presented in Figure 4.1. In a hierarchical

Hierarchical learning algorithms 57

C

H

A B

D E F

G I J

Figure 4.2: Re-labeling of the training data for the first classification subtask, at the
root node, in the hierarchical local approach. Solid ellipses represent the real categories
of a training instance di: Ci = {C, H}. The ellipse in bold represents the category used
as a true label of di in the classification subtask: Ĉi = {A}; Ŝ = {(di, {A})}. Node A is
a child category of the root node as well as the ancestor of the instance’s real categories
C and H.

text categorization task, we are given a training set S = ((d1, C1), . . . , (dm, Cm)), where

each document di ∈ D belongs to a subset of classes (i.e. covers several topics) Ci ⊆ C.

The class set C forms a hierarchy H = 〈C,≤〉. The algorithm first builds a classifier

for the categories of the first level of the hierarchy. Any conventional machine learning

method can be employed here. However, if a given classification task is multi-label,

which is a common case in hierarchical text categorization, the learning method has

to be able to perform multi-label classification. This classifier then assigns the most

relevant categories to a test instance x ∈ D. If none of the categories seems relevant,

the categorization process is stopped. Otherwise, in the next step the learning process is

repeated for all categories assigned to the instance classifying it into categories on deeper

levels of the hierarchy. Note that in order to learn a classifier for an internal class c ∈ C,

we need to transform the original training set S into Ŝ. For this, we pick out the training

instances that belong to at least one offspring of category c and change their labels into

corresponding categories, children of c (see an example in Figure 4.2). More formally,

each instance (di, Ci) ∈ S, for which there exists cj ∈ Ci, an offspring of category c,

is replaced with instance (di, Ĉi), where Ĉi is composed of all categories, children of c

and ancestors of categories from the original label set Ci: Ŝ = {(di, Ĉi): ∃(di, Ci) ∈ S,

∀ĉj ∈ Ĉi ∃cj ∈ Ci ĉj ∈ Ancestors(cj) ∧ ĉj ∈ Children(c)}.
This algorithm is basically the standard version of pachinko machine with the excep-

tion of the added ability to stop the categorization process at an intermediate level of

the hierarchy. This novelty allows us to cope with cases where instances can be assigned

to any node of a class hierarchy, including non-leaf nodes. It is also consistent with our

new hierarchical evaluation measure, which is introduced in Chapter 5.

Hierarchical learning algorithms 58

A B

C D

E

Figure 4.3: Inconsistent labeling as a result of applying the standard hierarchical local
approach to a DAG hierarchy. Ellipses in bold represent the categories assigned to an
instance by a hierarchical local classifier. Class E has been assigned by a classifier learned
for node C. At the same time, its second parent D has not been assigned as a decision
of a classifier learned for node B.

The algorithm is guaranteed to produce labeling consistent with a given class hier-

archy, because we cannot assign an instance to a class without first assigning it to its

parent. In fact, it does not matter in which order we explore the nodes of a hierarchy,

breadth-first or depth-first, as long as a node is explored after its parent node. In the case

of directed acyclic graphs (DAGs), however, the order becomes important. If we blindly

apply the same algorithm to a DAG hierarchy, we can encounter a situation similar to

the one shown in Figure 4.3. This figure shows an inconsistent labeling as a result of

the wrong classification order. Suppose, we first learn a classifier for the top node of the

hierarchy and assign an instance to both categories A and B. Then, we learn a classifier

for node A and assign the instance to C. If in the next step we learn a classifier for node

C and assign the instance to E, then we can end up with an inconsistent labeling in the

case when the classifier in node B does not assign the instance to class D. To keep the

consistency requirement fulfilled, we have to impose more restrictions on the classifica-

tion order: a node can be explored only after all its parent nodes have been explored. In

addition, we have to keep track of all visited nodes to avoid recurring exploring of nodes

that can be reached by different paths. The full version of the generalized hierarchical

local approach can be found in Figure 4.4.

4.2 New hierarchical global approach

In this section we present a global hierarchical framework that produces a classifier

consistent with a given category hierarchy [Kiritchenko et al., 2005b]. We introduce

this framework with a state-of-the-art learning algorithm AdaBoost.MH [Schapire and

Hierarchical learning algorithms 59

Given: training set S = ((d1, C1), . . . , (dm, Cm)), where di ∈ D, Ci ⊆ C
unseen instance x ∈ D
hierarchy H = 〈C,≤〉

for each c ∈ C do:
done[c] = false
rejected[c] = false

push(Queue, Root(H))

start: while(Queue is not empty) do:
c = pop(Queue)

if done[c] then go to start
if rejected[c] then go to start

for each p ∈ Parents(c,H) do:
if not done[p] then

push(Queue, c)
go to start

done[c] = true

add(Labels, c)

if not Leaf(c,H) then
Ŝ = {(di, Ĉi): ∃(di, Ci) ∈ S, ∀ĉj ∈ Ĉi ∃cj ∈ Ci

ĉj ∈ Ancestors(cj) ∧ ĉj ∈ Children(c)}
predictor = learn classifier(Ŝ)
local labels = classify instance(predictor, x)

for each ci ∈ Children(c, H) do:
if ci ∈ local labels then

push(Queue, ci)
else

for each f ∈ Offspring(ci,H) do:
rejected[f] = true

Return Labels.

Figure 4.4: Generalized hierarchical local approach for DAG hierarchies.

Hierarchical learning algorithms 60

sports

footballhockey

team

game

winner

champion

goalkeeper

NHL

puck

Super Bowl

touchdown

quarterback

Figure 4.5: Hierarchically shared attributes. The categories “hockey” and “football”
have their own specific vocabulary while sharing some common terms that also appear
in their parent category “sports”.

Singer, 1999] as an underlying learning method. In addition, we propose three novel

techniques for selecting thresholds for AdaBoost.MH in truly multi-label settings.

The new hierarchical global approach is simple and effective. Before learning a clas-

sification model, we make given (inconsistent) data consistent with a corresponding class

hierarchy. For this, we expand the label set of each training example with the corre-

sponding ancestor labels. As a result, in the modified dataset each intermediate category

contains training examples originally assigned to this category and examples originally

assigned to the descendant nodes of the category in a hierarchical graph. This data

modification forces a learning algorithm to focus on high level categories by providing a

large number of training examples for those categories. The correct classification of un-

seen instances into high level categories is very important in hierarchical categorization

since high level categories define the most general topics for documents. For example, if

we classify a news article about an art exhibition into category “sports” (if “arts” and

“sports” are among the top level categories), it would be completely wrong. On the other

hand, a mistake made for lower levels, e.g. classification of a document on minor hockey

into category “professional hockey”, would not be so dramatical.

We expect the presented strategy to be successful in the hierarchical settings be-

cause a hierarchical structure is typically designed to reflect the semantic closeness of

categories. Therefore, we anticipate that related categories share some attributes. In

the text categorization context, that means shared vocabulary. For example, categories

“hockey” and “football” have their own specific vocabulary, such as “goalkeeper” or

“NHL” for “hockey” and “Super Bowl” or “touchdown” for “football” (Figure 4.5). At

the same time, these two categories likely share some common terms, such as “team”

or “game”, that also appear in their parent category “sports”. Our method allows a

Hierarchical learning algorithms 61

Given: training set S = ((d1, C1), . . . , (dm, Cm)), where di ∈ D, Ci ⊆ C
unseen instance x ∈ D
hierarchy H = 〈C,≤〉

Ŝ = {(di, Ĉi): (di, Ci) ∈ S, Ĉi = {⋃ck∈Ci
Ancestors(ck)}}

predictor = learn classifier(Ŝ)

Labels = classify instance(predictor, x)

for each ci ∈ Labels do:
if ∃ck : ck ∈ Ancestors(ci) ∧ ck /∈ Labels then

Labels = re-label consistently(x, Ancestors(ci))

return Labels

Figure 4.6: Hierarchical global approach.

learning algorithm to explore such common attributes in order to improve classification,

especially for high level categories.

Overall, the algorithm consists of three steps:

1. Transformation of training data, making them consistent with a given class hierar-

chy;

2. Application of a regular learning algorithm on the multi-label dataset;

3. Re-labeling of inconsistently classified test instances.

The pseudo-code for the hierarchical global approach is presented in Figure 4.6. In

the first step, we replace each example (di, Ci), di ∈ D, Ci ⊆ C, with (di, Ĉi), where

Ĉi = {⋃ck∈Ci
Ancestors(ck)}. Figure 4.7 shows an example of such replacement. Initially,

only categories E and F are assigned to a training instance. This labeling is inconsistent

with the class hierarchy since the ancestor categories A, B, C, and D of the initial labels

E and F are not assigned to the instance. We correct this inconsistency and add labels

A, B, C, and D to the label set of the example.

After that, we apply a regular learning algorithm, in our case AdaBoost.MH, on the

modified multi-label dataset. As we mentioned earlier, this is a general framework, which

is not restricted to AdaBoost.MH only. Any learning method capable of dealing with

multi-label settings can be used here instead of AdaBoost.MH.

Since we train a classifier on consistent data, we expect the classifier to label test

instances consistently as well. However, it is not guaranteed. Some of the test instances

can end up with inconsistent labels. For example, AdaBoost.MH cannot preserve the

consistency since it manipulates the weights for each category independently simulating

in a way the “one vs. all” approach. Therefore, a test instance can be classified in-

consistently if the confidence score of some class A passes a given threshold while the

Hierarchical learning algorithms 62

A B

C D

E

F

Figure 4.7: Re-labeling of the training data in the hierarchical global approach. The
solid ellipses represent the initial categories a training instance belongs to; the ellipses
in bold show the categories added to the label set of the instance by the hierarchical
algorithm.

confidence score of one of its ancestor classes does not. For such instances we need to

do the third post-processing step. At this step we re-label the instances in a consistent

manner by considering the confidence in the predictions for class A and all its ancestor

classes. One possible procedure here is to calculate the average of these confidences. If

the average is greater than a threshold, we label the instance with class A and all its

ancestor classes; if the average is lower than the threshold, we do not assign class A to

the instance. This procedure acts as a kind of weighted voting. Each ancestor class votes

with its own confidence score. Large positive scores would indicate high certainty in the

assigning the class, while negative values would vote against this class assignment.

4.2.1 AdaBoost.MH, a boosting algorithm for multi-class

multi-label classification

Boosting is a learning technique that combines many simple “weak” hypotheses into

one highly accurate predictor. This class of techniques is called ensemble learning and

consists of boosting, bagging, cross-validated committees and others. Each of these

methods produce several hypotheses h1, . . . , hL. Then, the final decision is made by a

committee of these hypotheses, typically by weighted voting:

h(d) =
∑

i

wihi(d).

The intuition behind ensemble methods is that the decision of several classifiers can

be more accurate than the decision of one of them if they make uncorrelated errors. Like

in an old saying, “two heads are better than one”. If a classifier makes a mistake on an

instance, there is a chance that other classifiers in the committee make a correct decision

Hierarchical learning algorithms 63

in this case, therefore, improving the overall accuracy. This is particularly true when the

classifiers make errors independently of each other. In general, if individual predictors

are at least slightly better than random and the errors they make are independent, then

the voting decision should be more accurate than either of the predictors. However, if

the individual classifiers have error rates greater than 50%, then the committee’s error

will only increase.

More formally, there are at least three reasons why ensemble methods can produce

committees more accurate than a single classifier [Dietterich, 1997]. First, a hypothesis

space can be so large and/or an available training set can be so small, that there are

several plausible hypotheses that satisfy the training data. In this case, an ensemble of

these hypotheses is a natural choice for the final classifier. Second, a learning algorithm

usually is not capable of exhaustively searching the entire hypothesis space. For example,

finding the smallest decision tree consistent with training data is NP-hard, so a decision

tree learning algorithm uses some heuristics to guide the search. Therefore, there can

be situations where the learning algorithm is unable to find the optimal solution. Since

individual classifiers are usually trained on different samples of training data, an ensemble

of these classifiers can produce a better solution than a single classifier. Third, in some

situations a hypothesis space may not contain the true function. For example, a decision

tree learning algorithm cannot produce a decision hyperplane that is not parallel to

coordinate axes; it can only approximate such a hyperplane. Individual classifiers trained

on different samples of training data will produce different approximations, therefore

leading to a better overall approximation as a committee’s decision.

The ensemble methods differ in ways that they learn hypotheses and later on combine

them. In boosting, the choice of one hypothesis influences the choice of other hypotheses

and the weights assigned to them. Such ensembles are called additive models. A very

successful boosting algorithm, called AdaBoost, was proposed by Freund and Schapire

[Freund and Schapire, 1996] and was improved and extended for the multi-class multi-

label case by Schapire and Singer [Schapire and Singer, 1999]. Later, a specialized version

of AdaBoost for text categorization was implemented in software BoosTexter [Schapire

and Singer, 2000]. We will first describe the multi-class multi-label variant of AdaBoost,

called AdaBoost.MH, and then its specific implementation in BoosTexter, which we use

in our experiments1.

As has already been mentioned, AdaBoost.MH [Schapire and Singer, 1999] is designed

1BoosTexter software is available free for non-commercial research or educational purposes from
http://www.research.att.com/∼schapire/BoosTexter/

Hierarchical learning algorithms 64

for multi-class multi-label problems. Formally, let D denote the domain of instances

and C be a finite set of class labels, |C| = k. Let S = ((d1, C1), . . . , (dm, Cm)) be a

set of training examples, where di ∈ D and Ci ⊆ C, i.e. each instance can belong to

multiple classes. The task is to predict all and only the correct labels for each instance

(d, Cd) ∈ D × C. To achieve this task, AdaBoost.MH aims to minimize the Hamming

loss, which is the symmetric difference between the real Cd and predicted h(d) label sets

on a given distribution of examples:

Hamming LossP (H) =
1

k
E(d,Cd)∼P{|h(d)∆Cd|}

where H : D → 2C is a learned hypothesis, P is a given distribution of examples, E{f}
is the expectation value of a function f , and ∆ is symmetric difference.

We can reformulate this multi-class multi-label problem as k binary problems where

the ith problem corresponds to correctly predicting whether an instance (d, Cd) ∈ D×C

belongs to the ith class ` ∈ C or not. We can view C as a vector of binary labels (` ∈ C is

included in Cd or not) and h(d) as a vector of k binary predictions. Then, the Hamming

loss will be the average error rate of h on these k binary problems.

Let’s denote

Ci[`] =





+1, if ` ∈ Ci,

−1, if ` /∈ Ci.

for all Ci ⊆ C and ` ∈ C.

Now, we assume access to a “weak” learning algorithm that takes as input a set of

training examples S = ((d1, C1), . . . , (dm, Cm)) and a distribution P over {1, . . . , m}.
It returns a “weak” hypothesis h : D × C → <. These hypotheses provide not only

class predictions, but also self-rated confidences of the predictions. We call the values

h(d, `) the confidence scores. We interpret the sign of h(d, `) as essentially a prediction, i.e

positive (negative) values mean that h assigns (does not assign) instance d to class `. The

magnitude of |h(d, `)| corresponds to the reliability of the prediction. Put another way,

we cut off the predictions at zero threshold: all categories with confidences greater than

or equal to zero are assigned to an instance while the categories with negative confidences

are not. In Section 4.2.2 we present methods of finding more practical thresholds leading

to better performance.

Overall, the AdaBoost.MH algorithm works as follows (see Figure 4.8). First, each

training example (di, Ci) is replaced with k examples ((di, `), Ci[`]), ` ∈ C and the dis-

tribution P (i, `) is maintained over examples i and labels `. Initially, the distribution is

Hierarchical learning algorithms 65

Given: training set S = ((d1, C1), . . . , (dm, Cm)), where di ∈ D, Ci ⊆ C

Initialize distribution P1(i, `) = 1/(mk).
For t = 1, . . . , T :

• Train weak learner using distribution Pt.

• Get weak hypothesis ht : D × C → <.

• Choose αt ∈ <.

• Update:

Pt+1(i, `) =
Pt(i, `)exp(−αtCi[`]ht(di, `))

Zt

where

Ci[`] =
{

+1, if ` ∈ Ci,
−1, if ` /∈ Ci,

and Zt is a normalization factor (chosen so that Pt+1 will be a distribution).

The final hypothesis:

H(d, `) =
T∑

t=1

αtht(d, `)

is used to classify an unseen instance d ∈ D with threshold t̄ = 0:

(d, `) =
{

true, if H(d, `) ≥ 0,
false, if H(d, `) < 0.

Figure 4.8: AdaBoost.MH [Schapire and Singer, 1999].

uniform. Then, on each iteration t a new “weak” hypothesis h : D × C → < is learned

on a current distribution Pt(i, `) over the training examples. After that, the distribution

is modified to increase the weight of the incorrectly classified training examples and de-

crease the weight of the correctly classified examples. As a result, in the next round a

“weak” learner is forced to focus on examples that are hardest to classify.

Schapire and Singer [Schapire and Singer, 1999] proved the upper bound on the

Hamming loss of the final hypothesis H:

Hamming Loss(H) ≤
T∏

t=1

Zt,

where Zt is the normalization factor computed in round t

Zt =
m∑

i=1

∑

`∈C

Pt(i, `)exp(−αtCi[`]ht(di, `)).

Hierarchical learning algorithms 66

In each round we want to minimize the Hamming loss of the predictions. Thus, we need

to choose αt and design a “weak” learning algorithm in such a way as to minimize Zt.

AdaBoost.MH is a general-purpose algorithm that can be combined with any “weak”

learning method. In practice, however, it is usually employed with decision trees or

decision stumps2. BoosTexter software [Schapire and Singer, 2000], designed specifically

for text categorization, offers one such implementation. In BoosTexter, a “weak” learner

is a decision stump. It tests if a term w is present or absent in a document:

h(d, `) =





q0`, if term w does not occur in d,

q1`, if term w occurs in d,

where qj` are real numbers representing the confidences of the predictions.

Let’s denote X0 the subset of training documents that do not contain term w and X1

the subset of training documents that contain term w: X0 = {d ∈ D : w does not occur in

d}, X1 = {d ∈ D : w occurs in d}. It was shown [Schapire and Singer, 1999] that in order

to minimize the normalization factor Zt, we should set αt = 1 and qj` = 1
2
ln

(
W j`

+1

W j`
−1

)
. The

weights W j`
+1 (W j`

−1) represent the total weight (with respect to the current distribution

Pt) of documents in subset Xj that are (are not) labeled with category `:

W j`
b =

∑

di∈Xj ,Ci[`]=b

Pt(i, `), j ∈ {0, 1}, b ∈ {+1,−1}.

With such settings, we have

Zt = 2
∑

j∈{0,1}

∑

`∈C

√
W j`

+1W
j`
−1.

At each iteration we choose the term w that minimizes Zt.

Since the values W j`
+1 and W j`

−1 can be in practice very small or even 0, BoosTexter

applies a smoothing technique:

qj` =
1

2
ln

(
W j`

+1 + ε

W j`
−1 + ε

)
,

where ε is some small positive value.

AdaBoost has been extensively studied by many researchers in the past 10 years. In

2A decision stump is a one-level decision tree.

Hierarchical learning algorithms 67

many experiments AdaBoost showed excellent results significantly improving the perfor-

mance of single learners (e.g. decision trees) as well as beating other ensemble methods

(e.g. bagging). Schapire and colleagues explain this phenomena from the point of view of

PAC learning theory [Schapire et al., 1998]. They provide the boundary on the general-

ization error of an ensemble showing that the success of AdaBoost is due to its ability to

increase the margins on the training data3. However, this bound is not tight enough to

fully explain the impressive performance of the algorithm. Friedman, Hastie, and Tibshi-

rani give another possible explanation from the statistical point of view [Friedman et al.,

2000]. They show that AdaBoost can be interpreted as a stage-wise estimation procedure

for fitting an additive logistic regression model F (x) =
∑M

i=1 kmfm(x). Therefore, un-

like other (randomized) ensemble methods that only reduce variance to compensate the

instability of base learners, AdaBoost reduces both bias and variance by jointly fitting

individual hypotheses in an additive predictor.

Moreover, AdaBoost has a very important property: resistance to overfitting. Often,

when a predictor becomes very complex in its attempt to decrease the training error, the

classification model overfits the data, and the test error increases. In AdaBoost, on the

other hand, as more “weak” hypotheses are added, the test error decreases and then levels

off. This is possibly due to the fact that with each successive step the changes to the

overall function become smaller since only training points along the decision boundary

(the points that were incorrectly classified at the previous step) are involved in the

learning of a new base classifier. Also, AdaBoost fits M functions sequentially, step-wise,

therefore, reducing the variance of an ensemble comparing to the variance of jointly fitted

M functions [Friedman et al., 2000].

4.2.2 Finding high-quality thresholds for multi-label

AdaBoost.MH

The classification decisions of AdaBoost.MH are made based on the final hypothesis:

H(d, `) =
∑T

t=1 αtht(d, `), which is a real-valued function. For single-label classification,

the classification decision is simply the top-ranked class, the class with the highest confi-

dence score. In a multi-label case, however, we have to select a threshold to cut off class

labels for a given instance. One such possible threshold is zero: any positive confidence

score indicates that the class should be assigned to an instance, any negative score indi-

3The margin is the quantity Ci[`]H(d, `) that characterizes the amount by which d is correctly
classified.

Hierarchical learning algorithms 68

Given: training set S = ((d1, C1), . . . , (dm, Cm)), where di ∈ D, Ci ⊆ C
hierarchy H = 〈C,≤〉

predictor = Learn AdaBoost(S)
Confidences[] = Classify(predictor, S)

thresholds = {Confidences[dj][ci] | j = 1,. . . ,m, i = 1,. . . ,k}
Sort(thresholds)

f max = 0
For each t ∈ thresholds

f = Calculate F1(t, S, Confidences[])
if (f > f max)

f max = f ; t max = t

Return t max.

Figure 4.9: Finding best single threshold for AdaBoost.MH.

cates that the class should not be assigned to an instance. However, we are often able

to find better thresholds with procedures described below.

The first one is a simple straight-forward procedure for selecting the best single

threshold for given data. The algorithm is presented in Figure 4.9. First, we train

AdaBoost.MH on an available training set S and get the confidence predictions on the

same set S. Then, we put the confidences in a decreasing order and try them one by one

as possible thresholds. For each such threshold we compute the evaluation measure that

we try to optimize, e.g. the F1 measure, on the training data and pick the threshold that

gives the best result. Since it is well-known that optimizing the learning parameters on

training data often leads to overfitting, we also run a similar procedure with a hold-out

validation set. For this, we learn a classifier on the training data, but get the confidences

and compute F1 measure on the hold-out set.

Since a hierarchical text categorization task usually involves a large number of classes,

it is unlikely that the best single threshold well represents all the best individual class

thresholds. Therefore, we test a slightly more complex procedure that finds the best

individual thresholds for every subtree of the top node of a class hierarchy4. So, we start

with zero thresholds for all classes in a hierarchy: T [ci] = 0, ci ∈ C (Figure 4.10). We

learn a classifier and get the confidence values for all training instances and all categories.

Then, we separately find the best single thresholds for each subtree in turn. Specifically,

for each subtree Subtreer we try every confidence value assigned to categories from this

subtree as a possible threshold t: T [ci] = t, ci ∈ Subtreer. We calculate the F1 measure

4This procedure is defined only for class hierarchies represented as trees. In a general case, where a
class hierarchy is a DAG, this procedure is not applicable.

Hierarchical learning algorithms 69

Given: training set S = ((d1, C1), . . . , (dm, Cm)), where di ∈ D, Ci ⊆ C
hierarchy H = 〈C,≤〉

For each ci ∈ C
T [ci] = 0

predictor = Learn AdaBoost(S)
Confidences[] = Classify(predictor, S)

For each cr ∈ Children(Root(H))
Subtreer = {ci ∈ C|ci ∈ Offspring(cr)}
thresholds = {Confidences[dj][ci] | j = 1,. . . ,m, i = 1,. . . ,k, ci ∈ Subtreer}
Sort(thresholds)

f max = 0
For each t ∈ thresholds

For each ci ∈ Subtreer

T [ci] = t
f = Calculate F1(T [], S, Confidences[])
if (f > f max)

f max = f ; t max = t

For each ci ∈ Subtreer

T [ci] = t max

Return T [].

Figure 4.10: Finding best subtree thresholds for AdaBoost.MH.

on the whole training set using thresholds T [ci], ci ∈ C. Finally, we pick the value that

gives the best result and update T [ci] for all classes from the subtree: ci ∈ Subtreer.

In addition, we compile a procedure that finds the best individual class thresholds

(Figure 4.11). This procedure provides the most flexible set of thresholds. As in the

previous routine, we start with zero thresholds for all classes in a hierarchy: T [ci] =

0, ci ∈ C. We learn a classifier and get the confidence values for all training instances

and all categories. Then, we separately find the best single thresholds for each class in

turn. Specifically, for each class cr we test every confidence value assigned to the class

as a possible threshold t: T [cr] = t. We calculate the F1 measure on the whole training

set using thresholds T [ci], ci ∈ C. Finally, we pick the value that gives the best result

and update the class threshold T [cr].

We conduct a series of experiments to investigate the goodness of the proposed thresh-

olding techniques for multi-label AdaBoost.MH. The first set of experiments is designed

to study the performance of different thresholding strategies in the simplest setting,

single-label non-hierarchical. We compare the proposed thresholding techniques with

the best strategy on single-label tasks, which is to assign the single most confident pre-

Hierarchical learning algorithms 70

Given: training set S = ((d1, C1), . . . , (dm, Cm)), where di ∈ D, Ci ⊆ C
hierarchy H = 〈C,≤〉

For each ci ∈ C
T [ci] = 0

predictor = Learn AdaBoost(S)
Confidences[] = Classify(predictor, S)

For each cr ∈ C
thresholds = {Confidences[dj][cr] | j = 1,. . . ,m}
Sort(thresholds)

f max = 0
For each t ∈ thresholds

T [cr] = t
f = Calculate F1(T [], S, Confidences[])
if (f > f max)

f max = f ; t max = t

T [cr] = t max

Return T [].

Figure 4.11: Finding best individual class thresholds for AdaBoost.MH.

diction. For these experiments, we use 26 datasets from the UCI repository [Hettich

et al., 1998] described in Table 4.15. In addition, we experiment with the “flatten” ver-

sion of our synthetic data (ignoring hierarchical relations)6. We evaluate the performance

with standard F-measure. For each UCI dataset, 10 times 10-fold cross-validation ex-

periments are performed; 100 runs are performed on randomly generated synthetic data

(with parameters set to the following: number of levels is 3, out-degree is 2).

The results are presented in Figure 4.12 and Tables 4.2 and 4.3. Figure 4.12 shows

the performance of the 4 thresholding strategies: single (most confident) prediction, zero

threshold, best single threshold, and best individual class thresholds7. The plots on the

left show the performance of these algorithms on one of the UCI datasets, Autos, and

the plots on the right demonstrate the performance on the synthetic data. Evidently,

the best single and class thresholding methods have a tendency to overfit the data.

To explain this phenomenon, we study the behavior of the best found thresholds over

the boosting iterations (bottom row of Fig. 4.12). At the beginning of the learning

process, AdaBoost.MH consistently underestimates its confidence in class prediction,

confidence scores tend to be negative, and so are the best thresholds. While the number

5The UCI datasets were chosen to contain at least 5 attributes and at least 100 examples.
6For description of the synthetic data see Section 6.1.
7The best subtree thresholding strategy is not applicable to non-hierarchical data.

Hierarchical learning algorithms 71

dataset number of attributes number of categories number of examples

anneal 38 6 898
audiology 69 24 226
autos 26 7 205
breast-cancer 9 2 286
colic 28 2 368
credit-a 15 2 690
credit-g 20 2 1000
diabetes 8 2 768
glass 9 7 214
heart-c 13 5 303
heart-h 13 5 294
heart-statlog 13 2 270
hepatitis 19 2 155
hypothyroid 29 4 3772
ionosphere 34 2 351
kr-vs-kp 36 2 3196
lymph 18 4 148
mushroom 22 2 8124
primary-tumor 17 22 339
segment 19 7 2310
sick 29 2 3772
sonar 60 2 208
splice 61 3 3190
vehicle 18 4 846
vowel 13 11 990
waveform-5000 40 3 5000

Table 4.1: UCI datasets used in the experiments.

of iterations increases, the best thresholds increase as well coming towards zero. After

a while, AdaBoost.MH becomes very confident in the prediction on training data; as

a result, the best thresholds turn into “large” positive values and can overfit the data.

To avoid this effect, we can use a hold-out set instead of training data to search for

best thresholds. Fig. 4.12 (on the right) shows the performance of the single and class

thresholding on hold-out set on the synthetic data. Alternatively, if obtaining additional

data is a problem (as it is the case in many real-life situations), a simple smoothing

technique also works very well: instead of the best threshold, we use the average of the

best and the closest smaller confidence score. For this, we sort all confidence scores that

we get on training data in the decreasing order (t1, t2, ..., tn). Then, we find tk that

gives the best value for the F-measure (the best threshold). With the number of boosting

iterations, the separation between the positive and negative confidence scores tends to

Hierarchical learning algorithms 72

 62

 64

 66

 68

 70

 72

 74

 76

 78

 80

 82

 84

 0 50 100 150 200 250 300 350 400 450 500

F-
va

lu
e

Autos dataset

single prediction
zero threshold

single threshold
single threshold (averaged)

class thresholds
class thresholds (averaged)

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 0 50 100 150 200 250 300 350 400 450 500

th
re

sh
ol

d

boosting iterations

threshold
threshold (averaged)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350 400 450 500

F-
va

lu
e

Synthetic dataset

single prediction
zero threshold

single threshold
single threshold (averaged)

single threshold on hold-out
class thresholds

class thresholds (averaged)
class thresholds on hold-out

-0.08

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0 50 100 150 200 250 300 350 400 450 500

th
re

sh
ol

d

boosting iterations

threshold
threshold (averaged)

threshold on hold-out

Figure 4.12: AdaBoost.MH with different thresholding strategies on single-label non-
hierarchical data.

grow. Thus, the best score tk is usually a large positive value while the next score tk+1

is a negative value. By taking an average (tk + tk+1)/2, we keep our threshold close

to zero, therefore, avoiding overfitting. The results (bottom row of plots in Fig. 4.12)

confirm our hypothesis showing that the averaged thresholds indeed stay very close to

zero. This technique has a dramatic effect on the performance. Both single and class

averaged thresholding methods produce results significantly better than non-averaged

techniques reaching the performance of thresholding on hold-out data or even better.

Another interesting observation is that all proposed thresholding techniques (smoothed

and non-smoothed) considerably outperform the thresholding at zero at the beginning of

the boosting process, when the number of iterations is small and the confidence values are

mostly negative. After a while, all techniques, except non-smoothed ones, show similar

performance and get close to the best possible line, the performance of the single most

confident prediction.

Hierarchical learning algorithms 73

single threshold class thresholds
dataset zero threshold non-averaged averaged non-averaged averaged

anneal 98.49 98.64 98.67+++ 98.75+++ 98.80+++
audiology 77.40 77.68 77.98+++ 77.47 77.62
autos 72.64 73.61 73.96 73.90+++ 73.75
breast-cancer 70.23 71.81+++ 71.80+++ 72.29+++ 71.91+++
colic 82.15 82.27 82.32 81.88 82.09
credit-a 85.45 85.73+++ 85.52 85.58 85.34
credit-g 73.67 75.26+++ 75.39+++ 75.25+++ 75.34+++
diabetes 75.24 76.90+++ 76.88+++ 76.58+++ 76.59+++
glass 68.60 69.84+++ 68.85+++ 68.24 68.18
heart-c 82.93 82.81 82.32 81.76— 81.62
heart-h 82.00 82.35 81.89 81.42 80.99
heart-statlog 80.67 80.92 81.38 80.09 80.61
hepatitis 82.88 82.89 82.4 82.53 81.67
hypothyroid 99.54 99.53 99.55 99.54 99.56
ionosphere 92.90 92.77 93.05 92.14— 92.47
kr-vs-kp 95.17 95.60+++ 95.59+++ 96.81+++ 96.76+++
lymph 82.65 82.68 83.03 82.39 83.20
mushroom 99.95 99.98+++ 99.97+++ 100.00+++ 100.00+++
primary-tumor 47.06 47.83 47.59 46.21 45.90
segment 94.04 94.29+++ 94.25+++ 94.39+++ 94.33+++
sick 97.35 97.39 97.35 97.32 97.34
sonar 80.06 79.38 79.99 78.96— 79.80
splice 93.00 93.14+++ 93.01 93.16+++ 93.06
vehicle 68.25 71.94+++ 71.69+++ 71.78+++ 72.03+++
vowel 70.20 72.51+++ 72.59+++ 73.79+++ 73.15+++
waveform-5000 81.80 82.40+++ 82.55+++ 82.54+++ 82.65+++

total +++ 12 12 12 10
total — 0 0 3 0

Table 4.2: The performance (F-measure) of AdaBoost.MH with different thresholding
strategies on UCI data after 25 iterations. “+++”/“—” indicate that AdaBoost.MH
with a corresponding thresholding algorithm performs better/worse than AdaBoost.MH
with zero thresholding and the differences are statistically significant according to the
paired t-test with 99% confidence.

Hierarchical learning algorithms 74

single threshold class thresholds
dataset zero threshold non-averaged averaged non-averaged averaged

anneal 99.58 99.50 99.59 98.99— 99.55
audiology 82.62 79.56— 82.12 75.51— 81.69—
autos 82.32 79.68— 81.86 76.69— 81.70
breast-cancer 69.05 70.31+++ 70.50+++ 70.86+++ 71.09+++
colic 81.71 81.65 81.74 81.49 81.72
credit-a 84.12 84.22 83.99 84.05 83.99
credit-g 73.69 74.56+++ 74.95+++ 74.63+++ 74.98+++
diabetes 74.81 75.53+++ 75.19+++ 75.43+++ 74.84
glass 71.87 70.23— 71.48 66.66— 71.25
heart-c 78.43 78.42 79.02 78.02 78.48
heart-h 78.94 79.11 79.22 78.06— 78.68
heart-statlog 78.37 78.23 78.14 78.10 78.17
hepatitis 83.18 78.33— 83.70 77.97— 83.64
hypothyroid 99.50 99.45 99.48 99.34— 99.48
ionosphere 93.10 87.71— 93.05 86.98— 92.93
kr-vs-kp 96.82 96.83 96.87 97.01+++ 97.00+++
lymph 82.14 81.82 81.95 80.94 81.76
mushroom 100.00 100.00 100.00 100.00 100.00
primary-tumor 45.65 46.44 45.86 45.54 45.37
segment 97.01 97.04 97.01 96.77— 97.00
sick 97.64 97.66 97.69 97.66 97.68
sonar 83.28 60.01— 82.88 59.45— 82.88
splice 94.49 94.46 94.50 94.46 94.51
vehicle 75.71 76.34+++ 76.45+++ 76.07 76.48+++
vowel 84.90 85.11 85.30+++ 84.23— 85.11
waveform-5000 83.89 84.23+++ 84.44+++ 84.23+++ 84.48+++

total +++ 5 6 5 5
total — 6 0 11 1

Table 4.3: The performance (F-measure) of AdaBoost.MH with different thresholding
strategies on UCI data after 200 iterations. “+++”/“—” indicate that AdaBoost.MH
with a corresponding thresholding algorithm performs better/worse than AdaBoost.MH
with zero thresholding and the differences are statistically significant according to the
paired t-test with 99% confidence.

Hierarchical learning algorithms 75

Similar results are obtained on most of the UCI datasets. Table 4.2 shows the results

of the zero, single, and class thresholding algorithms as well as the averaging version

of the single and class thresholding algorithms on 26 UCI datasets after 25 boosting

iterations. Both averaged and non-averaged versions of the single thresholding strategy

significantly outperform zero thresholding on 12 datasets. On all other data the three

algorithms show similar results. Most of the UCI datasets are quite small and simple,

so apparently, 25 iterations is enough for AdaBoost.MH to learn confident models. As

a result, we cannot gain much from choosing a threshold other than zero. The class

thresholding strategies, both non-averaged and averaged, demonstrate a slightly worse

performance outperforming zero thresholding on 12 and 10 datasets respectively. How-

ever, they were able to produce significantly better results than single thresholding on

3 datasets, namely “kr-vs-kp”, “mushroom”, and “vowel”. Table 4.3 shows the perfor-

mance of the same algorithms after 200 boosting iterations. On 5 (the hardest) datasets

we still see significant improvement of single thresholding over zero thresholding. How-

ever, it is more than twice as small as it was after 25 iterations. Also, on 6 datasets

there is a significant loss in F-measure. At the same time, the smoothed version does

not show any loss while demonstrating improvement on 6 datasets. Similar situation

holds for class thresholding and its smoothed version, yet the performance of the class

thresholding is getting quite worse than the performance of single thresholding.

In the second set of experiments, we compare the proposed thresholding techniques

in the hierarchical settings. We used our synthetic data as well as the 20 newsgroups and

Reuters-21578 datasets (for description of these datasets see Section 6.1). AdaBoost.MH

is replaced with its hierarchical global version, and the performance is evaluated with

our hierarchical hF-measure (see Chapter 5). In both settings, hierarchical and non-

hierarchical, the algorithms behave very similarly. Figure 4.13 shows the performance

of the proposed algorithms in the hierarchical settings on the synthetic data8. Again

the non-smoothed versions of the algorithms start to overfit the data after about 100

iterations when the best thresholds outgrow zero. One noticeable difference in these

plots is that the single most confident prediction does not work well in the hierarchical

settings since most of the examples have more than one class label.

We also run similar experiments on real data, namely 20 newsgroups and Reuters-

21578. Figure 4.14 shows how much gain we can get on real data with single thresholding

8The subtree thresholding methods are not shown to keep the plots readable. Those methods show
very similar performance to the corresponding single thresholding methods since the class hierarchy of
the synthetic dataset has only two subtrees.

Hierarchical learning algorithms 76

 40

 45

 50

 55

 60

 65

 70

 75

 80

 0 2 4 6 8 10 12 14

hF
-v

al
ue

Synthetic dataset

single prediction
zero threshold

single threshold
single threshold (averaged)

single threshold on hold-out
class thresholds

class thresholds (averaged)
class thresholds on hold-out

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0 2 4 6 8 10 12 14

th
re

sh
ol

d

boosting iterations (logarithmic scale)

threshold
threshold (averaged)

threshold on hold-out

Figure 4.13: Hierarchical AdaBoost.MH with different thresholding strategies on multi-
label hierarchical data.

as oppose to zero thresholding. On real, large-scale data with large class hierarchies and

thousands of relevant attributes, AdaBoost.MH needs several hundreds or even a few

thousands of iterations to learn high confidence models. This means that with time

constraints when the number of iterations is limited, our thresholding techniques can be

very beneficial. In our experiments, on both datasets the single thresholding method

outperforms zero thresholding even after 500 iterations (the differences are statistically

significant with 99% confidence). The gain is the largest at the beginning of boost-

ing learning. As the number of iterations grows, the difference in performances of two

algorithms decreases. At the same time, the rate of performance improvement for Ad-

aBoost.MH also decreases with the number of iterations. As a result, the savings from

the single thresholding technique in terms of boosting iterations increase as boosting

progresses. Overall, AdaBoost.MH with single thresholding requires up to 30% fewer

Hierarchical learning algorithms 77

 66

 68

 70

 72

 74

 76

 78

 80

 82

 0 100 200 300 400 500 600 700 800 900 1000

hF
-v

al
ue

boosting iterations

20 newsgroups

zero threshold
single threshold

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 50 100 150 200 250 300 350 400 450 500

hF
-v

al
ue

boosting iterations

reuters

zero threshold
single threshold

Figure 4.14: Hierarchical AdaBoost.MH with the best single threshold and with zero
threshold on “20 newsgroups” and “reuters” data.

iterations than AdaBoost.MH with zero threshold does to reach the same level of accu-

rateness.

These results show that the proposed thresholding techniques (with smoothing or

using hold-out data) can effectively replace the single prediction method when needed, i.e.

in multi-label settings. Among the three strategies, single, subtree and class thresholding,

there is no clear winner, so single thresholding seems the most attractive because of its

simplicity. Also, this technique often produces better results than the zero thresholding

method, especially when the number of boosting iterations is small. Therefore, we use

the averaged single thresholding approach in the following experiments since we do not

always have enough data for hold-out sets.

4.3 Other global hierarchical approaches

We have experimented with a few other hierarchical algorithms: hierarchical decision

trees, ECOC, and cost-sensitive learning. However, the preliminary results have not

shown any promise; thus, we have decided not to pursue these topics any further. We

present a brief description of the undertaken approaches for completeness (for more

details see Appendix A).

Hierarchical learning algorithms 78

Hierarchical decision trees

The objective of this approach was to modify the entropy/gain ratio splitting criteria

to incorporate the hierarchical information. In short, we have tried to favor splits with

categories that are close in a hierarchical graph, in a way simulating the hierarchical

local approach. In particular, we modified the entropy formula to give more weight to

sibling categories. We also tested the hierarchical evaluation measure as a new splitting

criterion. Finally, we experimented with Gini index and different misclassification costs.

Overall, we were not able to get a significant improvement in F-measure. The resulting

decision trees were usually larger, which probably led to overfitting.

ECOC

Error-Correcting Output Codes (ECOC) proved to be a robust scheme for multi-class

categorization. Generally, the codes are generated independently to get maximal row and

column separation9. To enable the hierarchical information, we added bits to represent

the class dependencies and to allow more/less separation between sibling and non-sibling

categories. The additional bits resulted in smaller column separation and therefore, in

less accurate predictions.

Cost-sensitive learning

Cost-sensitive learning concerns the classification tasks where the costs of misclassifica-

tion errors are not uniform10. For example, the cost of deleting an important email as

spam is usually much larger than the cost of letting a spam message through. A few

algorithms have been proposed to deal with such problems. We experimented with two

such algorithms: C5.0 and MetaCost.

C5.0 is a commercial release of the classical decision tree learning algorithm C4.5

[Quinlan, 1993]. It has been designed to handle large datasets faster and more efficiently.

It also has additional functionalities, such as incorporated boosting, variable misclassifi-

cation costs, sampling, and others. The variable misclassification costs component allows

C5.0 to construct classifiers that minimize expected misclassification costs rather than

error rates.

9Separation is defined as the number of bits in which the codes differ (Hamming distance).
10In general, cost-sensitive learning also deals with the costs of tests, such as the costs of observing

features. In this work, we do not take these costs into account.

Hierarchical learning algorithms 79

MetaCost [Domingos, 1999] is a method for making any learning algorithm cost-

sensitive. This is achieved by applying a cost-minimizing procedure around a base

learner. The algorithm uses bagging to estimate the class probabilities on training ex-

amples, relabels the training examples with the estimated optimal class that minimizes

misclassification costs and applies a base learner on the relabeled training set.

Class hierarchies can naturally be converted to cost matrices: the larger the distance

between two classes in a hierarchy, the bigger their misclassification cost should be in a

cost matrix. To test if such transformation can be useful for hierarchical text catego-

rization, we ran both algorithms on the 20 newsgroups dataset with varied costs. The

performance of C5.0 with costs was just slightly better than its performance with uniform

costs. We suspect that this is due to poorly calibrated prediction probabilities produced

by the decision tree learning algorithm. At the same time, MetaCost produced results

much worse than those of the base non-cost-sensitive learner.

4.4 Summary

In this chapter we have presented two hierarchical learning approaches that are capable

of performing hierarchically consistent classification. The first approach is a generalized

version of the classical hierarchical local algorithm, pachinko machine. We extend the

local approach to the general case of DAG class hierarchies and possible internal class

assignments. The second algorithm is a novel hierarchical global framework that builds a

single classifier for all categories in a hierarchy. Since in present research both algorithms

are applied with AdaBoost.MH as a base learner, we have described this state-of-the-

art boosting technique and introduced several novel methods for selecting high-quality

thresholds for AdaBoost.MH in the multi-label setting.

Chapter 5

Hierarchical evaluation measure

In this chapter we discuss performance evaluation measures for hierarchical classifica-

tion and introduce natural, desired properties that these measures ought to satisfy. We

define a novel hierarchical evaluation measure, and show that, unlike the conventional

“flat” as well as the existing hierarchical measures, the new measure satisfies the desired

properties. It is also simple, requires no parameter tuning, and has much discriminating

power.

5.1 Motivation

As we have shown in the overview of previous work (Section 3.3), most researchers evalu-

ate hierarchical classification systems based on standard “flat” measures: accuracy/error

and precision/recall. However, these measures are not suitable for hierarchical catego-

rization since they do not differentiate between different kinds of misclassification errors

(see Figure 5.1). Since most of the class hierarchies in text categorization reflect the

semantic closeness of categories, misclassification to a sibling or parent node of a correct

category intuitively seems preferable to misclassification to a distant node. Therefore,

we need a new measure that would be more discriminating, allowing us to give credit for

less severe misclassification errors.

The alternative measures for hierarchical categorization proposed so far are not flex-

ible enough. The category similarity based measure proposed by Sun and Lim [Sun and

Lim, 2001] considers two categories to be similar if they share the vocabulary. In real-life

hierarchies, however, categories with similar vocabulary can be placed quite far away

from each other and misclassification between them can be considered as a severe error.

80

Hierarchical evaluation measure 81

Figure 5.1: Weaknesses of the conventional non-hierarchical measures. The solid ellipse
represents the real category of a test instance; the ellipse in bold (with an arrow pointing
to it) represents the category assigned to the instance by a classifier. Non-hierarchical
evaluation metrics give the errors equal weights, so the classification performance is the
same in all three cases. (Strictly speaking, exactly the same values would be obtained
only for microaveraged metrics; however, for each category the contribution of the errors
would be the same for all non-hierarchical measures.)

For example, topics “genetic algorithms (a computer science discipline)” and “genetics (a

bioscience discipline)” share many keywords such as chromosome, mutation, crossover,

population (see Figure 5.2), yet misclassification between these two categories is unde-

sirable. In addition, documents can have several topics. For example, chess is a common

application for AI algorithms, such as heuristic search. Therefore, there exist many docu-

ments that can be classified as “chess-related” and as “AI-related” (for example, articles

about the match between Gary Kasparov and the IBM computer Deep Blue). These

two categories share some documents and some vocabulary. However, misclassifying a

document about a chess match at the world championship as an AI topic would be com-

pletely wrong. The same is true for the class similarity measure proposed by Wang and

colleagues [Wang et al., 2001]. Categories that share many documents are not necessarily

close in the hierarchy. In different applications the closeness of categories is determined

differently. Thus, if we want to have a general measure suitable for all applications, we

have to base our measure only on the information available to us: a given hierarchy. We

argue that the only reliable relations between categories are the relations given by the

hierarchy.

Distance-based measures give a relatively good approximation of category relations

in a hierarchy, but they are not discriminating enough. For example, misclassification

into a sibling and into a grandparent of a correct category would have a distance error of

2, and we cannot separate these two cases (see Figure 5.3). Moreover, a distance-based

measure does not change with depth. Misclassification into a sibling category of a top

level node and misclassification into a sibling of the node 10-level deep are considered

the same type of error (distance of 2). However, an error at the 10th level seems a lot

Hierarchical evaluation measure 82

The evolution of the probabilities of genetic identity within and between the loci of a multigene family dispersed
among multiple chromosomes is investigated. Unbiased gene conversion, equal crossing over, random genetic
drift, and mutation to new alleles are incorporated. Generations are discrete and nonoverlapping; the diploid,
monoecious population mates at random. The linkage map is arbitrary, but the same for every chromosome; the
dependence of the probabilities of identity on the location on each chromosome is formulated exactly. The greatest
of the rates of gene conversion, random drift, and mutation is {epsilon} << 1.

T. Nagylaki. Gene Conversion, Linkage, and the Evolution of Repeated Genes Dispersed Among Multiple Chromo-
somes. Genetics, 126: 261-276, 1990.

In general, genetic algorithms start with an initial set of random solutions, called population. Each individual in
the population is called a chromosome, representing a solution to the problem at hand. A chromosome is a string
of symbols (usually represented by a binary bit string). The chromosomes evolve through successive iterations,
called generations. During each generation, the chromosomes are evaluated using some measures of fitness. To
create the next generation, new chromosomes are formed by three essential operations: selection, crossover, and
mutation.

G. Kim and S. Kim. Feature Selection Using Genetic Algorithms for Handwritten Character Recognition. In the
Proceedings of the 7th International Workshop on Frontiers in Handwriting Recognition, 2000.

Figure 5.2: Weaknesses of the category similarity based measure. The extracts of scien-
tific articles show vocabulary shared by two diverse topics: genetic algorithms (a com-
puter science discipline) and genetics (a bioscience discipline). Shared keywords are
shown in bold.

less harmful than an error at the top level.

5.1.1 Desired properties of a hierarchical evaluation measure

To express the desired properties of a hierarchical evaluation measure, we formulate the

following requirements [Kiritchenko et al., 2005b]:

1. Partially correct classification.

The measure gives credit to partially correct classification (Figure 5.4(1)), e.g. mis-

classification into node A when the correct category is G should be penalized less than

misclassification into node B since A is in the same subgraph as G and B is not. With

this property we want the measure to be able to separate the cases of completely wrong

classification, i.e. when the classification is wrong even at the most general level, and

partially correct classification, i.e. when classification is correct at least at the top level.

2. Error discrimination by distance.

The measure penalizes distant errors more heavily:

a) the measure gives higher score for correctly classifying one level down compared

with staying at the parent node (Figure 5.4(2a)), e.g. classification into node D is better

than classification into its parent A since D is closer to the correct category G ;

b) the measure gives lower score for incorrectly classifying one level down compared

Hierarchical evaluation measure 83

Figure 5.3: Weaknesses of distance-based hierarchical measures. The solid ellipse rep-
resents the real category of a test instance; the ellipse in bold represents the category
assigned to the instance by a classifier; edges in bold represent the shortest path between
the real and assigned categories or, in other words, the distance-based error. In both
cases, the distance-based error equals to 2.

with staying at the parent node (Figure 5.4(2b)), e.g. classification into node C is worse

than classification into its parent A since C is farther away from G.

Since most of the first hierarchical measures were distance-based, it is obvious that

this property is desired for an ideal hierarchical measure.

3. Error discrimination by depth.

The measure penalizes errors at higher levels of a hierarchy more heavily

(Figure 5.4(3)), e.g. misclassification into node H when the correct category is its sibling

G is less severe than misclassification into node D when the correct category is its sibling

C. This property supports our intuition that errors made at deeper levels are less severe.

Formally, let us denote HM(c1|c2) the hierarchical evaluation score of classifying an

instance d ∈ D into class c1 ∈ C when the correct class is c2 ∈ C in a given tree hierarchy

H = 〈C,≤〉. This score represents the level of correctness of classification results, i.e.

the better classification, the higher evaluation score HM . Then, the following properties

should be observed.

1. Partially correct classification: for any instance (d, c0) ∈ D × C,

if Ancestors(c1) ∩ Ancestors(c0) 6= ® and Ancestors(c2) ∩ Ancestors(c0) = ®, then

HM(c1|c0) > HM(c2|c0);
1

2. Error discrimination by distance:

a) for any instance (d, c0) ∈ D × C, if c1 = Parent(c2) and

distance(c1, c0) > distance(c2, c0), then HM(c1|c0) < HM(c2|c0);

b) for any instance (d, c0) ∈ D × C, if c1 = Parent(c2) and

distance(c1, c0) < distance(c2, c0), then HM(c1|c0) > HM(c2|c0);

3. Error discrimination by depth: for any instances (d1, c1), (d2, c2) ∈ D × C, if

1Let us remind that ancestor sets Ancestors(ci), ci ∈ C do not contain the root of the class hierarchy.

Hierarchical evaluation measure 84

1.

2. a)

2. b)

3.

A B

C D E F

H I J

A B

C D E F

H I J

A B

C D E F

H I J

A B

C D E F

H I J

A B

C D E F

H I J

A B

C D E F

H I J

A B

C D E F

H I J

A B

D E F

G H I J

G

G

G

G

G

G

G

C

Figure 5.4: The desired properties of a hierarchical evaluation measure. The solid el-
lipse represents the real category of a test instance; the ellipse in bold (with an arrow
pointing to it) represents the category assigned to the instance by a classifier. A good
hierarchical measure should give more credit to the situations on the left comparing to
the corresponding situations on the right.

Hierarchical evaluation measure 85

Desired properties of a
hierarchical evaluation measure

Evaluation Measure Partially Error Error

correct discrimination discrimination

classification by distance by depth

conventional “flat” measures - - -

distance-based measures - + -

weighted distance - + +
[Blockeel et al., 2002]

weighted penalty + - +
[Blockeel et al., 2002]
(semantic similarity measure
[Lord et al., 2003])

class similarity measure - - -
[Wang et al., 2001]

category similarity measure - + +
[Sun and Lim, 2001]

measure proposed by - + -
Ipeirotis et al. (2001)

Table 5.1: Characteristics of the “flat” and existing hierarchical evaluation measures.

distance(c1, c
′
1) = distance(c2, c

′
2), level(c1) = level(c2) + ∆, level(c′1) = level(c′2) + ∆,

∆ > 0, c1 6= c′1, c2 6= c′2, and level(x) is the length of the unique path from the root to

node x, then HM(c′1|c1) > HM(c′2|c2).

The listed requirements are natural properties that any hierarchical evaluation mea-

sure should possess. These requirements cover straightforward situations where there

is an intuitive behavior of a measure. We ensure that hierarchical evaluation measures

behave consistently at least in these basic situations.

Clearly, all previous measures do not satisfy at least one of the properties (Table 5.1).

• Conventional “flat” measures, such as standard accuracy or precision/recall, con-

sider all kinds of misclassification errors to be equally bad; thus, they do not satisfy

Hierarchical evaluation measure 86

any of the three requirements.

• Distance-based hierarchical measures calculate the distance between correct and

predicted categories in a hierarchical tree. They satisfy the second principle, but

not the first and not the third. In addition, they are not easily extendable to DAG

hierarchies (where multiple paths between two categories can exist) and multi-label

tasks.

• The weighted distance measure, where all hierarchy edges are given weights decreas-

ing exponentially with depth [Blockeel et al., 2002], solves the problem with the

third property, but other drawbacks of distance-based measures remain. Also, this

weighted distance measure requires a set of predefined weights (possibly application-

dependent) which are not obvious to get. It is even more problematic with the

cost-sensitive distance measure [Cai and Hofmann, 2004], where two sets of weights

cost1(v) and cost2(v) are required for each node v.

• The weighted penalty measure [Blockeel et al., 2002] (semantic similarity measure

[Lord et al., 2003]) is calculated as the weight of the deepest common ancestor of

correct and predicted categories, where deeper nodes have smaller weights. This

measure satisfies the first and third properties, but not the second one. Since many

pairs of categories would share the same ancestor nodes and, therefore, have the

same weighted penalty, this measure has little discriminating power.

• Class similarity measure [Wang et al., 2001] considers the similarity of the sets of

documents belonging to the categories. It heavily depends on a given corpus and,

in general, does not satisfy all three requirements. For example, misclassification

into a sibling category which does not share any documents with a correct category

would be given zero credit.

• Category similarity measure [Sun and Lim, 2001] is based on the content of docu-

ments comprising the categories. It also heavily depends on a given corpus. How-

ever, in general, it should satisfy the second and third properties, but may violate

the first one.

• The measure proposed by Ipeirotis et al. [Ipeirotis et al., 2001] considers the overlap

in subtrees induced by a correct and predicted category sets. It satisfies only

the second property. This measure gives credit only to misclassification into an

Hierarchical evaluation measure 87

A B C

D E

H I KJ

F

G

Figure 5.5: New hierarchical measure. The solid ellipse G represents the real category of
an instance; the ellipse in bold F (with an arrow pointing to it) represents the category
assigned to the instance by a classifier. All nodes on the path from the root to the
assigned category (i.e. the ancestors of the assigned category) are shown in bold since
they are also assigned to the instance by our measure. The path from the root to
the real category - the correct path - is shown in bold. hP = |{C}| / |{C, F}| = 1/2,
hR = |{C}| / |{B, C, E, G}| = 1/4.

ancestor or a descendant category of a correct category, but gives zero credit for

misclassifying into a sibling of a correct category.

5.2 New hierarchical evaluation measure

We propose a new measure for evaluating hierarchical text categorization systems that

is based solely on a given hierarchy, gives credits for partially correct classification and

is very discriminating [Kiritchenko et al., 2005b]. Our new measure is the pair precision

and recall with the following addition: each example belongs/classified not only to a

class, but also to all ancestors of the class in a hierarchical graph, except the root. We

exclude the root of the tree, since all examples belong to the root by default. We call

the new measure hP (hierarchical precision) and hR (hierarchical recall).

Formally, in the multi-label settings, for any instance (di, Ci), d ∈ D, Ci ⊆ C classi-

fied into subset C ′
i ⊆ C we extend sets Ci and C ′

i with the corresponding ancestor labels:

Ĉi = {⋃ck∈Ci
Ancestors(ck)}, Ĉ ′

i = {⋃cl∈C′i
Ancestors(cl)}. Then, we calculate (microav-

eraged) hP and hR as follows:

hP =
∑

i |Ĉi∩Ĉ ′i|∑
i |Ĉ ′i|

hR =
∑

i |Ĉi∩Ĉ ′i|∑
i |Ĉi|

For example, suppose an instance is classified into class F while it really belongs

to class G in a sample DAG class hierarchy shown in Figure 5.5. To calculate our

Hierarchical evaluation measure 88

hierarchical measure, we extend the set of real classes Ci = {G} with all ancestors of

class G : Ĉi = {B, C, E,G}. We also extend the set of predicted classes C ′
i = {F} with

all ancestors of class F : Ĉ ′
i = {C,F}. So, class C is the only correctly assigned label

from the extended set: |Ĉi ∩ Ĉ ′
i| = 1. There are |Ĉ ′

i| = 2 assigned labels and |Ĉi| = 4

real classes. Therefore, we get hP =
|Ĉi∩Ĉ′i|
|Ĉ′i|

= 1
2

and hR =
|Ĉi∩Ĉ′i|
|Ĉi| = 1

4
. 2

The new measure is close in spirit to the one proposed by Ipeirotis, Gravano, and

Sahami [Ipeirotis et al., 2001]. In their work, for a given instance all categories in a sub-

tree rooted in a correct category are also considered correct and the overlap in subtrees

induced by the correct and predicted category sets is measured. The principle differ-

ence between the two measures is that instead of counting the descendants we count

the ancestors. We believe that our method is more intuitive since in general, category

relationships, “is-a” and “part-of”, are transitive. In other words, it is legitimate to say

that an entity belonging to a category also belongs to the category’s ancestors. However,

an entity belonging to a category normally belongs only to some of the category’s descen-

dants. For example, a document about cellular processes in general cannot be classified

under the cell growth category because it also describes other processes in a cell. At the

same time, a document about cell growth is about cellular processes.

To summarize the two parts of the measure, precision and recall, into one value, we

compute the hierarchical F-value:

hFβ =
(β2 + 1) · hP · hR

(β2 · hP + hR)
, β ∈ [0, +∞)

Parameter β is chosen for a task at hand and represents the relevant importance of one

part of the measure over the other in a given application. The hierarchical evaluation

measure makes natural decisions in terms of precision and recall separately. Then, in the

combined measure the preference can be given to either part depending on the applica-

tion. The final decision is left to a user: if one is interested in recall, β should be set to

2It may seem reasonable to count an ancestor label several times if a few initial class labels share
this ancestor. We, however, follow the policy to add each ancestor only once so that the set of (true or
predicted) class labels remains a set after the addition of ancestor labels. For example, the set of nodes
{G,F} in Figure 5.5 would be extended to set {B, C,E, G, F} even though ancestor label C is shared
by both nodes G and F . Such an extension perfectly reflects the semantics of transitive class relations
where the extended set represents all the categories an instance is semantically associated with. It also
corresponds to the typical classifier behavior when a class label is assigned only once. For example,
suppose nodes G and F are true categories for some instance, but a classifier predicts category C. A
classifier is capable to return label C as its prediction only once and should not be penalized for not
returning it the second time. Therefore, the label should be counted as a true category only once.

Hierarchical evaluation measure 89

a value greater than 1; if one is interested in precision, β should be less than 13.

Our new hierarchical measure has already been adopted in the community. Joslyn

and colleagues used it in their work on automatic ontological function annotation [Joslyn

et al., 2005]. They have extended our measure to more precisely quantify the contribution

of each category in multi-label classification. Instead of calculating hierarchical precision

and recall for complete sets of predicted and true categories of an instance (as we do), they

exploit the pairwise calculations. For each predicted category of an instance, the maximal

pairwise hierarchical precision is calculated over all true categories, then summed over

all predicted categories to obtain the total precision:

hP =
∑

q∈C′i

maxp∈Ci

|Ancestors(p) ∩ Ancestors(q)|
|Ancestors(q)|

Similarly, for each true category, the maximal pairwise hierarchical recall is calculated

over all predicted categories, then summed over all true categories to obtain total recall:

hR =
∑

p∈Ci

maxq∈C′i

|Ancestors(p) ∩ Ancestors(q)|
|Ancestors(p)|

5.3 Probabilistic interpretation of precision and re-

call

In the previous section, we have given and explained the formulas for calculating the

hierarchical measures of precision and recall. Now, we present the natural interpretation

of these notions from the probabilistic point of view.

Precision can be defined as the probability that an instance classified into category ci

indeed belongs to this category, and recall is the probability that an instance that belongs

to category ci will be classified into this category. Hierarchical precision and recall follow

the same definitions if we extend the sets of correct and predicted categories with their

corresponding ancestor classes. Now, we can view precision and recall as parameters in

some probabilistic model that generates our observed data. The formulas for precision

and recall

3In all reported experiments we use microaveraged hF1 hierarchical measure, giving precision and
recall equal weights.

Hierarchical evaluation measure 90

p = TP
TP+FP r = TP

TP+FN

are estimates of these unknown parameters.

Goutte and Gaussier [Goutte and Gaussier, 2005] present one such probabilistic

model. For each category ci ∈ C, the experimental outcome can be summarized in

four numbers: TP (true positives), FP (false positives), TN (true negatives), and FN

(false negatives) (Table 5.2).

classified not classified
into ci into ci

belong to ci TP FN
do not belong to ci FP TN

Table 5.2: Contingency matrix defining TP (true positives), FP (false positives), TN
(true negatives), and FN (false negatives).

We can assume that observed TP, FP, FN, and TN counts follow a multinomial

distribution with parameters n = TP + FP + FN + TN and π = (π
TP

, π
FP

, π
FN

, π
TN

):

P (D = (TP, FP, FN, TN)) =
n!

TP !FP !FN !TN !
πTP

TP
πFP

FP
πFN

FN
πTN

TN
,

where π
TP

+ π
FP

+ π
FN

+ π
TN

= 1.

From this, Goutte and Gaussier project to a lower dimensional space. Using the

properties of multinomial distributions, they show that observed TP counts follow a

binomial distribution with parameters TP + FP and p (precision). Similarly, observed

TP counts follow a binomial distribution with parameters TP + FN and r (recall). So,

we can write for precision

P (D|p) =
(TP + FP)!

TP !FP !
pTP (1− p)FP

and for recall

P (D|r) =
(TP + FN)!

TP !FN !
rTP (1− r)FN .

Now, we want to find the most probable estimates for the parameters p and r given

the observed data D:

p̂ = argmaxp P (p|D) = argmaxp
P (D|p)P (p)

P (D)
= argmaxp P (D|p)P (p).

If we assume that all values for p are equally probable a priori, then we can derive

Hierarchical evaluation measure 91

the maximum likelihood estimate for parameter p:

p̂ML = argmaxp P (D|p) = argmaxp
(TP + FP)!

TP !FP !
pTP (1− p)FP .

Taking logarithm of the last expression

p̂ML = argmaxp ln(P (D|p)) = ln

(
(TP + FP)!

TP !FP !

)
+ TP ∗ ln(p) + FP ∗ ln(1− p)

and then the first derivative

∂log(P (D|p))

∂p
=

TP

p
− FP

1− p
,

we deduce the formula for the maximum likelihood estimate of p:

p̂ML =
TP

TP + FP
.

Similarly, the maximum likelihood estimate for recall r is

r̂ML = argmaxr P (D|r) =
TP

TP + FN
.

We can see that the usual formulas for precision and recall (and with class set exten-

sions for hierarchical precision and recall) are the maximum likelihood estimates of these

notions.

5.4 Properties of the new hierarchical measure

5.4.1 Satisfying all requirements for a hierarchical evaluation

measure

Theorem 1. The new hierarchical measure hF satisfies all three requirements for hier-

archical evaluation measures listed above.

Proof. Requirement 1 (Partially correct classification): for any instance

(d, c0) ∈ D × C, if Ancestors(c1) ∩ Ancestors(c0) 6= ® and

Ancestors(c2) ∩ Ancestors(c0) = ®, then HM(c1|c0) > HM(c2|c0).

Hierarchical evaluation measure 92

To calculate hF, we first extend labels c0, c1, and c2 with their ancestor labels:

Ĉ0 = Ancestors(c0), Ĉ1 = Ancestors(c1), Ĉ2 = Ancestors(c2). Since

Ancestors(c1) ∩ Ancestors(c0) 6= ®, hP (c1|c0) = |Ĉ1∩Ĉ0|
|Ĉ1| > 0. Similarly, hR(c1|c0) > 0

and hF (c1|c0) > 0. On the other hand, Ancestors(c2)∩Ancestors(c0) = ®, which means

that hP (c2|c0) = 0, hR(c2|c0) = 0, and hF (c2|c0) = 0. Therefore, hF (c1|c0) > hF (c2|c0).

Requirement 2 (Error discrimination by distance):

Part 1: for any instance (d, c0) ∈ D × C, if c1 = Parent(c2) and

distance(c1, c0) > distance(c2, c0), then HM(c1|c0) < HM(c2|c0).

In a hierarchical tree,

distance(x, y) = |(Ancestors(x) ∪ Ancestors(y))− (Ancestors(x) ∩ Ancestors(y))|.
Since it is given that distance(c1, c0) > distance(c2, c0) and c1 = Parent(c2), then it

follows that |Ancestors(c1) ∩ Ancestors(c0)| < |Ancestors(c2) ∩ Ancestors(c0)|. As a

result, hP (c1|c0) < hP (c2|c0), hR(c1|c0) < hR(c2|c0), and hF (c1|c0) < hF (c2|c0).

Part 2: for any instance (d, c0) ∈ D × C, if c1 = Parent(c2) and

distance(c1, c0) < distance(c2, c0), then HM(c1|c0) > HM(c2|c0).

Given that distance(c1, c0) < distance(c2, c0) and c1 = Parent(c2), we get that

|Ancestors(c1)| < |Ancestors(c2)| and

|Ancestors(c1) ∩ Ancestors(c0)| = |Ancestors(c2) ∩ Ancestors(c0)|. As a result,

hP (c1|c0) > hP (c2|c0), hR(c1|c0) = hR(c2|c0), and hF (c1|c0) > hF (c2|c0).

Requirement 3 (Error discrimination by depth): for any instances

(d1, c1), (d2, c2) ∈ D×C, if distance(c1, c
′
1) = distance(c2, c

′
2), level(c1) = level(c2) + ∆,

level(c′1) = level(c′2) + ∆, ∆ > 0, c1 6= c′1, and c2 6= c′2, then HM(c′1|c1) > HM(c′2|c2).

In a hierarchical tree, level(x) can be defined as the number of ancestor categories of

x: level(x) = |Ancestors(x)|. Since level(c1) = level(c2) + ∆, we get

|Ancestors(c1)| = |Ancestors(c2)|+ ∆. Similarly,

|Ancestors(c′1)| = |Ancestors(c′2)|+ ∆. However, it is given that

distance(c1, c
′
1) = distance(c2, c

′
2). This means that

|Ancestors(c1) ∩ Ancestors(c′1)| = |Ancestors(c2) ∩ Ancestors(c′2)|+ ∆. Thus,

hP (c′1|c1) =
|Ancestors(c1)∩Ancestors(c′1)|

|Ancestors(c′1)| =
|Ancestors(c2)∩Ancestors(c′2)|+∆

|Ancestors(c′2)|+∆
> hP (c′2|c2).

Similarly, hR(c′1|c1) > hR(c′2|c2). As a result, hF (c′1|c1) > hF (c′2|c2).

Hierarchical evaluation measure 93

5.4.2 Simplicity

The new measure is very simple and easy to compute. Unlike some of the previous

measures, e.g. the weighted distance or category similarity measures, it is based solely

on a given hierarchy, so neither a set of weights nor any parameter tuning is required.

However, if an application at hand calls for a different treatment for nodes in a class

hierarchy and the set of weights for all nodes is given, our new measure can easily

incorporate these weights by counting each node with its specified weight instead of the

uniform weight of 1.

5.4.3 Generality

Many previous measures, e.g. distance-based measures, were designed only to handle

tree hierarchies. The new hierarchical measure is already formulated for a general case

of multi-label classification with a DAG class hierarchy.

Moreover, our new measure can be efficiently employed in other applications. When-

ever a task has its target entities organized hierarchically and the hierarchical relations

are transitive, this task can be evaluated using our hierarchical measure. For exam-

ple, some dictionaries arrange word senses in “is-a” hierarchies [Resnik and Yarowsky,

1997]. Therefore, word sense disambiguation systems can be compared using hierarchical

precision and recall.

5.4.4 Consistency and discriminancy

We have also investigated the consistency and discriminancy properties of our new hierar-

chical measure in comparison with standard measures, such as non-hierarchical F-value.

For this, we follow the definitions introduced by Huang and Ling [Huang and Ling, 2005].

Definition (Consistency). For two measures f , g on domain Ψ, f , g are (strictly)

consistent if there exist no a, b ∈ Ψ, such that f(a) > f(b) and g(a) < g(b).

The consistency property means that if we have two classifiers A and B and A is more

accurate in terms of non-hierarchical measures, then the hierarchical measure agrees, and

A is better than B in terms of hF as well.

Evidently, our new measure is not strictly consistent with regular non-hierarchical

measures. Figure 5.6 shows an example where our measure gives inconsistent result with

standard measures. However, it seems like for most classifiers the consistency property

Hierarchical evaluation measure 94

P = 1/10 R = 1/10

hP = 11/11 hR = 11/20

P = 2/10 R = 2/10

hP = 4/12 hR = 4/20

9 8

1 2

Figure 5.6: An example of inconsistency of the new hierarchical measure with the conven-
tional non-hierarchical measure. The numbers in the nodes show the number of examples
classified into a particular node. The correct category for all 10 examples is shown as
a solid ellipse. The non-hierarchical measure favors the classifier on the right since it
classifies more test instances correctly. The hierarchical measure favors the classifier on
the left since it puts more instances on the correct path. (The values are microaveraged.)

holds; in other words, the new hierarchical measure is statistically consistent with non-

hierarchical ones.

Definition (Statistical Consistency). For two measures f , g on domain Ψ, let R =

{(a, b)|a, b ∈ Ψ, f(a) > f(b), g(a) > g(b)}, S = {(a, b)|a, b ∈ Ψ, f(a) > f(b), g(a) <

g(b)}. The degree of consistency of f and g is C = |R|
|R|+|S| . The measure f is statistically

consistent with g if and only if C > 0.5.

For the discriminancy property, we again follow the definition introduced by Huang

and Ling [Huang and Ling, 2005].

Definition (Discriminancy). For two measures f , g on domain Ψ, f is (strictly) more

discriminating than g if there exist a, b ∈ Ψ such that f(a) > f(b) and g(a) = g(b), and

there exist no a, b ∈ Ψ such that g(a) > g(b) and f(a) = f(b).

The discriminancy property implies that if non-hierarchical measures cannot tell apart

the performances of classifiers A and B, our measure is more discriminating and prefers

one over the other.

Unfortunately, the new measure is not strictly more discriminating than regular non-

hierarchical measures. Figure 5.7 shows an example where standard measures are more

discriminating than the hierarchical measure. However, the hierarchical measure has a

larger range of values; therefore, it can potentially discriminate more pairs of classifiers

(see Figure 5.8). This suggests that the new measure is statistically more discriminating

than standard measures.

Hierarchical evaluation measure 95

P = 1/3 R = 1/3

hP = 4/4 hR = 4/6

P = 2/3 R = 2/3

hP = 4/4 hR = 4/6

2

1

21

Figure 5.7: An example of the conventional non-hierarchical measure being more discrim-
inating than the new hierarchical measure. The numbers in the nodes show the number
of examples classified into a particular node. The correct category for all 3 examples
is shown as a solid ellipse. The non-hierarchical measure favors the classifier on the
right since it classifies more test instances correctly. The hierarchical measure gives the
same values to both classifiers. The root category is not counted because it is a default
category for all test instances. (The values are microaveraged.)

hP = 1/2 hR = 1/2 hP = 1/1 hR = 1/2 hP = 0/2 hR = 0/2

Figure 5.8: An example of the new hierarchical measure being more discriminating than
the conventional non-hierarchical measure. The solid ellipse represents the real category
of a test instance; the ellipse in bold with an arrow pointing to it represents the category
assigned to the instance by a classifier. For one non-hierarchical value we show three
different hierarchical values. (The values are microaveraged.)

Definition (Statistical Discriminancy). For two measures f , g on domain Ψ, let

P = {(a, b)|a, b ∈ Ψ, f(a) > f(b), g(a) = g(b)}, Q = {(a, b)|a, b ∈ Ψ, g(a) > g(b), f(a) =

f(b)}. The degree of discriminancy for f over g is D = |P |
|Q| . The measure f is statistically

more discriminating than g if and only if D > 1.

We believe that the new hierarchical measure is superior to the “flat” measures in

that it is statistically consistent with the “flat” measures, but statistically more dis-

criminating. To check if our intuition is indeed correct, we have run a series of tests to

compare the new and standard measures on a large number of settings. It is infeasible

to do the exhaustive comparison since the number of possible hierarchical topologies

and class distributions is infinite. Even for a given hierarchy and a class distribution,

the exhaustive comparison of all pairs of classification results is computationally heavy.

Hierarchical evaluation measure 96

hierarchy size degree of consistency degree of

out-degree depth (with 99% confidence interval) discriminancy

2 2 74.22± 0.01596 183.69
2 3 67.81± 0.01705 546.79
2 4 63.69± 0.01755 1572.17
2 5 60.67± 0.01782 5462.65

3 2 72.82± 0.01623 210.21
3 3 65.13± 0.01739 1105.49
3 4 59.54± 0.01791 10198.22
3 5 56.30± 0.01810 92330.57

4 2 71.97± 0.01639 280.22
4 3 62.03± 0.01771 3137.72
4 4 57.11± 0.01806 41922.02

5 2 69.92± 0.01673 381.32
5 3 60.56± 0.01783 6727.27

Table 5.3: The degree of consistency and discriminancy for hF-measure over “flat” F-
measure for uniform class distribution, 100 examples per class, and random classifiers.

hierarchy size degree of consistency degree of

out-degree depth (with 99% confidence interval) discriminancy

2 2 74.88± 0.01583 1596.79
2 3 68.29± 0.01698 4776.00
2 4 64.80± 0.01743 22009.67
2 5 62.06± 0.01771 38584.20

3 2 73.10± 0.01618 2321.54
3 3 66.23± 0.01726 8969.53
3 4 61.62± 0.01774 13167.65
3 5 57.66± 0.01803 152072.67

4 2 72.53± 0.01629 1655.33
4 3 64.47± 0.01746 6429.06
4 4 58.67± 0.01797 36289.75

5 2 70.81± 0.01659 1785.63
5 3 62.36± 0.01768 9372.69

Table 5.4: The degree of consistency and discriminancy for hF-measure over “flat” F-
measure for uniform class distribution, 1000 examples per class, and random classifiers.

Hierarchical evaluation measure 97

The alternative to the exhaustive comparison is a Monte Carlo approach: for a given

hierarchical topology and a class distribution pick randomly a pair of classification re-

sults and do the comparison. Many random experiments on average should yield a good

approximation to the results of the exhaustive approach.

So, to compare the new hierarchical and standard “flat” F-measures for consistency

and discriminancy, we adopt the Monte Carlo approach. For given parameters of a class

hierarchy, the number of levels and the out-degree, we build a balanced tree hierarchical

structure. For initial experiments we assume the uniform class distribution (for all inter-

nal and leaf categories). Also, we do not restrict the set of tested classification results to

a particular type, so each example is assigned randomly with the uniform distribution to

some category from the hierarchical tree. The number of examples is set to 100 per class

unless specified otherwise. We generate 10,000 random classification results, calculate

the “flat” and the hierarchical F-measure, and then compare these evaluations for all

pairs of classification results.

Table 5.3 shows the degree of consistency and the degree of discriminancy for a

number of class hierarchies of different sizes. The degree of consistency is above the

required threshold of 50% for all parameter settings. On small hierarchies, this value

gets over 70%. For larger hierarchies, the consistency drops yet still remaining above the

threshold. Moreover, the reduction rate is getting smaller with depth, so it is reasonable

to expect the consistency property to hold for hierarchies at least 3-4 levels deeper and a

few degrees “wider” than tested. The degree of discriminancy is far above the required

threshold of 1. It reaches several hundreds on small hierarchies to several thousands and

even tens of thousand on larger class structures.

In the next set of experiments, we increase the amount of data, setting the number of

examples to 1000 per class (Table 5.4). Extra examples considerably extend the variety

of possible values for the hierarchical hF-measure resulting in a tremendous increase in

the degree of discriminancy. At the same time, consistency of the two measures also

amplifies by a few percent.

Since uniform class distributions rarely present in real-world applications, we also

experiment with imbalanced data. In particular, we set the a priori probability of one of

the top level categories to be 5 or 10 times higher than the probability of any other cat-

egory in the hierarchy. Table 5.5 shows the results for 5:1 skewness, and Table 5.6 shows

the corresponding numbers for 10:1 skewness. The introduction of class imbalances at

the top level has an effect of slight decrease in consistency and a general increase in dis-

criminancy. The larger the class imbalance is, the greater differences in both consistency

Hierarchical evaluation measure 98

hierarchy size degree of consistency degree of

out-degree depth (with 99% confidence interval) discriminancy

2 2 69.48± 0.01680 268.42
2 3 64.70± 0.01744 584.82
2 4 61.80± 0.01773 1537.89
2 5 59.03± 0.01794 5536.70

3 2 68.57± 0.01694 307.96
3 3 62.63± 0.01765 1169.47
3 4 59.01± 0.01795 9432.81
3 5 55.41± 0.01814 78002.34

4 2 67.30± 0.01712 347.87
4 3 60.74± 0.01782 3042.48
4 4 57.01± 0.01806 42253.45

5 2 66.62± 0.01721 452.04
5 3 60.12± 0.01787 6881.80

Table 5.5: The degree of consistency and discriminancy for hF-measure over “flat” F-
measure for imbalanced class distribution (5:1), 100 examples per class, and random
classifiers.

hierarchy size degree of consistency degree of

out-degree depth (with 99% confidence interval) discriminancy

2 2 69.06± 0.01687 504.74
2 3 63.19± 0.01760 856.59
2 4 59.85± 0.01789 1727.50
2 5 57.93± 0.01801 4652.63

3 2 66.70± 0.01720 467.71
3 3 60.86± 0.01781 1279.15
3 4 58.09± 0.01800 8635.36
3 5 55.35± 0.01814 70237.61

4 2 65.18± 0.01738 477.48
4 3 59.43± 0.01792 2983.78
4 4 56.46± 0.01809 50809.21

5 2 63.99± 0.01752 542.14
5 3 58.33± 0.01799 7167.04

Table 5.6: The degree of consistency and discriminancy for hF-measure over “flat” F-
measure for imbalanced class distribution (10:1), 100 examples per class, and random
classifiers.

Hierarchical evaluation measure 99

hierarchy size degree of consistency degree of

out-degree depth (with 99% confidence interval) discriminancy

2 2 78.02± 0.01511 644.76
2 3 71.74± 0.01643 1554.11
2 4 66.98± 0.01716 3260.39
2 5 62.16± 0.01770 9829.94

3 2 76.30± 0.01552 679.02
3 3 67.14± 0.01714 2207.58
3 4 60.87± 0.01781 11400.49
3 5 56.12± 0.01811 111023.14

4 2 74.51± 0.01590 679.71
4 3 63.67± 0.01755 4726.01
4 4 56.58± 0.01809 51714.16

5 2 72.05± 0.01637 798.98
5 3 61.20± 0.01778 9030.14

Table 5.7: The degree of consistency and discriminancy for hF-measure over “flat” F-
measure for imbalanced leaf class distribution (10:1), 100 examples per class, and random
classifiers.

and discriminancy we observe. However, all numbers are still well above the required

thresholds. If the class imbalance is introduced to the leaf level of a class hierarchy, then

both the degree of consistency and the degree of discriminancy significantly improve

comparing to the uniform class distribution (Table 5.7).

Finally, we compare the two measures for more “realistic” classification results, where

predictions are better than random guesses. For this, we assign examples randomly with

the probability of assigning to their true categories twice as large as the probability of

assigning them to any incorrect category. The results are presented in Table 5.8. In

these more practical settings, the degree of consistency is considerably higher than it

was for random classifiers. At the same time, the degree of discriminancy is just slightly

lower. For more accurate classification results, where a correct decision is made 5 times

more often than an incorrect one, the degree of consistency is extremely high reaching

over 70% even for large hierarchies (Table 5.9). The degree of discriminancy is getting

smaller though stays still far above 1.

Overall, the experiments support our intuition that the hierarchical hF-measure is

statistically consistent while more statistically discriminating than standard “flat” F-

measure. By testing the two measures on a variety of parameter settings, such as the

Hierarchical evaluation measure 100

hierarchy size degree of consistency degree of

out-degree depth (with 99% confidence interval) discriminancy

2 2 81.53± 0.01416 152.00
2 3 77.43± 0.01525 422.09
2 4 73.82± 0.01604 989.06
2 5 69.21± 0.01684 3118.95

3 2 81.73± 0.01410 175.36
3 3 75.17± 0.01576 755.73
3 4 67.61± 0.01708 6296.94
3 5 62.49± 0.01767 78569.58

4 2 80.97± 0.01432 206.06
4 3 72.02± 0.01638 1913.21
4 4 60.97± 0.01780 27575.29

5 2 80.25± 0.01453 281.10
5 3 67.66± 0.01707 4412.88

Table 5.8: The degree of consistency and discriminancy for hF-measure over “flat” F-
measure for uniform class distribution, 100 examples per class, and “realistic” classifica-
tion results (correct prediction is twice as probable as incorrect one).

hierarchy size degree of consistency degree of

out-degree depth (with 99% confidence interval) discriminancy

2 2 87.39± 0.01211 140.36
2 3 85.74± 0.01276 372.59
2 4 83.94± 0.01340 883.24
2 5 81.50± 0.01417 2702.15

3 2 88.43± 0.01167 164.69
3 3 86.12± 0.01262 647.74
3 4 80.91± 0.01434 4535.26
3 5 70.70± 0.01661 29640.21

4 2 89.13± 0.01136 203.09
4 3 84.01± 0.01337 1379.32
4 4 70.75± 0.01660 15398.48

5 2 88.74± 0.01153 258.67
5 3 80.62± 0.01442 3138.80

Table 5.9: The degree of consistency and discriminancy for hF-measure over “flat” F-
measure for uniform class distribution, 100 examples per class, and “realistic” classifica-
tion results (correct prediction is 5 times as probable as incorrect one).

Hierarchical evaluation measure 101

size of a class hierarchy, the number of instances, the a priori class distribution, and the

probability of correct classification, we always obtain the degree of consistency higher

than 50% and the degree of discriminancy hundreds or thousands times larger than 1.

This confirms the superiority of the hierarchical measure over the “flat” measure at least

on (tested) hierarchies of small and moderate sizes.

5.4.5 Allowing a trade-off between classification precision and

classification depth

Similar to the pair of standard precision and recall, hierarchical precision and recall allow

a trade-off: depending on the nature of the hierarchical classification task, we may prefer

high precision at the cost of recall, which means that we classify mostly into high level

categories, or we may prefer higher recall at the cost of precision, which means that

we classify into the most specific categories. Combining the two measures into one hF-

measure, we can set β < 1 if we are interested in highly precise classification, or we can

set β > 1 if we want as much detail classification as possible.

5.5 Summary

In this chapter we discuss hierarchical performance evaluation measures. We formally

introduce a set of intuitively desired characteristics for a hierarchical measure and com-

pare the existing evaluation techniques based on these properties. We show that none

of the measures proposed to date possesses all the desired properties and, therefore, in-

troduce a novel hierarchical evaluation technique based on the notions of precision and

recall adapted to the hierarchical settings. We formally prove that the new measure ex-

hibits all the desired characteristics. Furthermore, we demonstrate that it is statistically

consistent, yet more discriminating than the conventional “flat” evaluation techniques.

Chapter 6

Experimental results

In this chapter we experimentally compare the two hierarchical learning algorithms pro-

posed in Chapter 4 on several real and synthetic datasets. Furthermore, we compare

the two algorithms with the conventional “flat” method that ignores any hierarchical

information. We limit the experiments to the two hierarchical techniques as they are

the only ones known to us that produce classification consistent with a given class hi-

erarchy. Comparison to an inconsistent classifier would be unfair since consistent and

inconsistent label sets differ radically especially for large, real-life hierarchies. The only

exception made is for the “flat” algorithm. Here we follow an established practice in the

hierarchical text categorization research where hierarchical methods are often compared

to the corresponding non-hierarchical, “flat” techniques. This comparison demonstrates

the value of the hierarchical research.

For performance evaluation we employ the novel hierarchical measure introduced in

Chapter 5. We would like to note that the evaluation procedure using the hierarchical

evaluation measure is suitable not only for comparing two hierarchical learning algo-

rithms, but also for comparing a hierarchical method and the “flat” algorithm. As dis-

cussed in Section 5, the hierarchical measure gives us an opportunity to reward partially

correct classification and discriminate different kinds of misclassification errors, which is

essential for hierarchical classifiers. At the same time, the hierarchical measure gives an

advantage to the “flat” method by automatically extending the set of categories predicted

by the “flat” algorithm with all their ancestor categories. The hierarchical learning ap-

proaches, on the other hand, have to explicitly predict all the correct categories including

all their ancestors.

Both hierarchical as well as the “flat” approach are executed with AdaBoost.MH as

102

Experimental results 103

dataset class hierarchy number of documents number of
number of depth out- total in training testing attributes
categories degree dataset

20 newsgroups 15 2 3 14,997 10,523 4,474 1,487

reuters-21578 120 2 20 11,367 7,952 3,414 2,035

RCV1 V2 103 4 4.68 634,831 30,208 33,275 1,696

Table 6.1: Characteristics of the text corpora used in the experiments. The number of
training and test documents and the number of attributes are averaged over 10 trials.

an underlying learning algorithm. The same number of boosting iterations is performed

for the “flat”, the global approach, and each subtask of the local classifier.

The experiments reveal the dominance of the hierarchical approaches over the “flat”

algorithm. Moreover, the advantage of the hierarchical techniques gets more evident on

larger class hierarchies. Between the two hierarchical approaches, the global algorithm

shows the best performance on all synthetic and some of the real datasets. In particular,

its classification is more precise while a little inferior in recall. Thus, we recommend it

for hierarchical classification tasks where precision is crucial.

6.1 Datasets

6.1.1 20 newsgroups

20 newsgroups is a widely used dataset of Usenet postings collected by Ken Lang [Lang,

1995]. It consists of 20 categories each having approximately 1000 documents. Each

document is considered to belong to exactly one category. The original dataset has no

hierarchical structure. Nevertheless, McCallum et al. suggested a two-level tree hierarchy

by grouping thematically 15 (out of 20) categories in 5 parent nodes [McCallum et al.,

1998]. The resulting hierarchical tree is presented in Appendix B.

In our experiments, the data are split into training and test sets reserving two thirds

for training and the rest for testing. We keep the initial uniform class distribution. All

experiments are repeated on 10 random train/test splits.

Experimental results 104

6.1.2 Reuters-21578

Reuters-21578 is another widely used dataset of news articles collected by David Lewis1.

It consists of 21578 documents and 135 thematic categories (topics). Each document is

labeled with zero, one, or several categories. We discard the documents that have no

labels ending up with 11,367 documents and 120 categories. The thematic categories form

a two-level tree hierarchy with 6 parent nodes. The hierarchy is presented in Appendix

B.

As for 20 newsgroups, the data are split into training and test sets (two thirds for

training, one third for testing) keeping the initial class distribution. All experiments are

repeated on 10 random train/test splits.

6.1.3 RCV1 V2

Reuters Corpus Volume 1 (RCV1) is a new benchmark collection of news articles recently

made available by Reuters Ltd. for research purposes. The cleaned version of the corpus,

called RCV1 V2, appeared later due to the effort by David Lewis and colleagues [Lewis

et al., 2004]. The dataset consists of over 800,000 documents comprising all English

language news stories written by Reuters journalists in the period of one year, from

August 20, 1996 to August 19, 1997. All articles were manually or semi-automatically

labeled with categories from three different sets: Topics, Industries, and Regions. We

exploit the Topics categories that form a 4-level hierarchy with 126 nodes. Only 103

categories were actually used for document labeling. Originally, all Topics categories are

assigned to documents in a hierarchically consistent manner, i.e. all ancestor labels are

included with any given fine-grain topic. Thus, we had to remove ancestor labels for

experiments with “flat” algorithm to simulate the non-hierarchical settings.

Due to the large size of the corpus, we are able to split the data into training and

testing subsets in a time-sensitive manner. Data from 10 full months of the mentioned

period (September, 1996 - June, 1997) are brought into play to form 10 splits: the first

half of a month (from the 1st to the 14th) is used for training, while the second half

is used for testing. In this way, we simulate the operation of a learning system in the

real-life settings where classifiers are trained on older, archive data and tested on new,

recently acquired instances.

1http://www.daviddlewis.com/resources/testcollections/reuters21578/

Experimental results 105

a) inherited attribute distributions

0 0 0 0 0 0 0 00 00

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 000

0 1 1 1 111

1 1

1 1 1 1 1 1 1

1 1 1 1 1 11

b) no inheritance of attribute distribution

0 0 0 0 0 0 0 00 00

00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 000

0 1 1 1 111

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 11

Figure 6.1: Generation of synthetic data with inheritance of attribute distribution (a)
and with no inheritance (b). Each category in a hierarchy is represented by 3 bits.
Consequently, a binary 2-level balanced tree hierarchy, which has 6 nodes (excluding
the root), is represented by an 18-bit vector. The instances are generated randomly
according to a specific distribution. In the first case (a), an instance that belongs to
category ci ∈ C has a high probability (70%) of 1s in the bits corresponding to any
category from Ancestors(ci); all other bits will be 1s with a low probability (20%). In
the second case (b), only bits that correspond to the category ci have the high probability
of being 1. In both figures, bits with the high probability of 1 are shown in bold.

The datasets are summarized in Table 6.1. For all learning algorithms compared in the

experiments, the data are pre-processed in the same way. First, stop words are removed,

and the remaining words are normalized with the Porter stemmer [Porter, 1980]. Then,

a simple but effective feature selection method is employed: all stems occurring in fewer

than n documents are discarded. The number n is chosen for each dataset separately to

keep the data files at manageable sizes. Finally, the remaining stems are converted into

binary attributes (a stem is present or not).

6.1.4 Synthetic data

We make use of synthetic data to be able to control the size of a class hierarchy and the

presence or absence of attribute inheritance between an ancestor class and its descendant

classes. The data are designed as follows. For a specified number of levels and for a

specified out-degree, i.e. the number of children nodes for each intermediate node, we

build a balanced tree hierarchy. For each class, including the internal ones, we allocate 3

Experimental results 106

characteristics hierarchical “flat”
local global (non-hierarchical)

description generalized top-down AdaBoost.MH applied AdaBoost.MH applied
level-by-level pachinko to consistently labeled to the set of all catego-
machine (Section 4.1) training data (Section 4.2) ries in a class hierarchy

learning procedure local global global

taking advantage of yes yes no
hierarchical information

extending training data yes yes no

Table 6.2: Comparative characteristics of the three learning algorithms: hierarchical
local, hierarchical global, and “flat”.

binary attributes and generate 10 training and 5 test instances per class. Each instance

is assigned to exactly one class (single-label categorization). The instances are generated

randomly according to the following distribution: attributes associated with the class of

an instance are set to 1 with 70% probability, all other attributes are set to 1 with 20%

probability2. We test synthetic data for two extreme situations (Figure 6.1). The first

one is when each class inherits the distribution of attributes from its parent class on top

of its own distribution. In other words, the attributes for a class and all its ancestor

classes have the high probability (70%) of 1 (shown in bold in Figure 6.1(a)); all other

attributes have the small probability (20%). The second situation is when there is no

inheritance of attribute distribution: only the attributes associated with the class of an

instance have 70% probability of 1 (shown in bold in Figure 6.1(b)), all others have 20%

probability. We ran experiments for hierarchies with the number of levels and out-degree

each ranging from 2 to 5. Experiments are repeated 100 times for every configuration.

6.2 Learning algorithms

In the following experiments we compare the performances of the three learning algo-

rithms (Table 6.2):

• Hierarchical local approach. This is a generalized hierarchical top-down level-

by-level pachinko machine described in Section 4.1. The algorithm splits the initial

2The numbers 70% and 20% are chosen arbitrarily to represent a fairy large and a fairy small
probabilities to separate attributes associated with different classes.

Experimental results 107

classification task into subtasks according to a class hierarchy. It proceeds in a

top-down fashion first picking the most relevant categories of the top level and

then recursively making the choice among the low-level categories, children of the

relevant top-level categories. In each classification subtask, the training sets of

internal nodes are extended with the examples of their descendant classes.

• Hierarchical global approach. This is a novel hierarchically consistent global

algorithm introduced in Section 4.2. It builds a single classifier to discriminate all

the categories in a given class hierarchy simultaneously. The algorithm proceeds in

three steps: re-labeling of the training data in the consistent manner, application of

a regular multi-label learning algorithm (AdaBoost.MH) on the modified data, and

(possible) post-processing to ensure the consistent classification of test instances.

As in the local approach, the training sets of all internal nodes are extended with

the examples of their descendant classes.

• “Flat” approach. This is standard, non-hierarchical AdaBoost.MH applied to

the “flat” set of all categories (internal and leaves) from a given class hierarchy. It

builds a single classifier for all categories similar the hierarchical global approach.

Yet, the class relations are ignored in this algorithm, and the training data are not

extended in the hierarchical way.

6.3 Results

6.3.1 Hierarchical vs. “flat” learning algorithms

The first set of experiments compares the performance of hierarchical approaches, local

and global, with the performance of the “flat” approach. The results are presented in

Tables 6.3 and 6.4. Figure 6.2 summarizes the results plotting one point for each of

the 20 synthetic (star points) and 3 real (square points) datasets used in the experi-

ments. Clearly, for the hF-measure most of the points lie above the diagonal line y = x,

which indicates that both hierarchical approaches significantly outperform the “flat” al-

gorithm on all real and most of the synthetic data. The differences in performance are

quite impressive reaching up to 55% on synthetic data with inherited attribute distri-

butions3. This is not surprising since these data were designed specifically to represent

3Figures 6.2 and 6.3 do not show the distinction between the two types of synthetic data (with and
without attribute distribution inheritance) as they aggregate the results.

Experimental results 108

ideal testbeds for the hierarchical approaches. The only two exceptions of the supe-

rior performance of the hierarchical algorithms are the synthetic data with the smallest

binary class hierarchies (2-level and 3-level) with no attribute distribution inheritance.

Synthetic data with no attribute distribution inheritance were intended to represent the

most challenging situation for the hierarchical methods. Indeed, we can see that these

datasets are harder to learn for all techniques, hierarchical as well as “flat”. This can

be explained by insufficient amount of training data. Each category is defined only by

3 attributes and the values of the attributes are set probabilistically. Thus, 10 training

examples per class do not provide enough information to learn an accurate model for a

class. As a result, the performance of all tested algorithms considerably deteriorates on

these data. When the number of categories is small, e.g. with 2-level and 3-level binary

hierarchies, the “flat” method is able to produce quite accurate classifiers and surpass

the local hierarchical algorithm. At the same time, the global approach is superior to

“flat” on all tested data.

Another important observation is that the local approach is generally less accurate

(in terms of hierarchical precision) than “flat” while its recall is always higher (up to

63%) (Figure 6.2, the top row). The global approach, on the other hand, outperforms

the “flat” method in both precision and recall on all data, except Reuters-21578 where

both algorithms show similar precision (Figure 6.2, the bottom row). Both the “flat”

and the hierarchical global algorithms work with the global information, i.e. with all

the categories and all the data simultaneously. Therefore, they assign instances only to

those categories that have enough support from the training data. The local algorithm,

on the contrary, works with the local information failing to see the big picture. Since at

each classification node it deals with only a few categories, it tends to assign labels at

each level pushing instances deep down the hierarchy. As a result, it can lose precision

on hard to classify instances and categories with insufficient training data. When the

number of categories gets bigger, the “flat” algorithm fails to keep up and produces very

poor results. The inadequate amount of training data prevents it from making informed

decisions and results in many instances left unresolved. For example, on a ternary 4-level

hierarchy (120 categories) it is capable to assign at least one category to only 2.56% of

test instances while the global hierarchical approach classifies 93.78% of instances. Such

a conservative policy results in very low values of recall while maintaining reasonable

numbers for precision. The hierarchical approaches work with extended training sets

having much more data, especially at high level categories and, therefore, are able to

make reliable decisions at least at the top of a hierarchy. This results in considerably

Experimental results 109

dataset out- depth boost. “flat” hierarchical local
degree iter. hP hR hF1 hP hR hF1

20 newsgroups 3 2 500 75.81 75.23 75.51 80.85 79.19 80.01

reuters-21578 20 2 500 91.31 83.18 87.06 90.75 87.54 89.11

RCV1 V2 4.68 4 500 74.14 72.10 73.10 72.19 75.99 74.03

synthetic 2 2 200 70.76 66.60 68.30 67.26 80.82 73.42
(with attr. 2 3 500 67.25 51.82 58.35 62.79 77.56 69.40
inheritance) 2 4 1000 68.37 33.52 44.90 61.93 75.83 68.18

2 5 2000 71.24 12.27 20.88 62.70 75.34 68.44

3 2 400 58.46 49.60 53.47 58.71 65.88 61.99
3 3 1000 57.03 19.98 29.51 56.85 60.97 58.81
3 4 3500 57.61 1.37 2.67 57.98 56.84 57.40

4 2 600 50.81 35.03 41.35 53.24 55.47 54.26
4 3 2500 50.11 3.76 6.98 52.67 48.84 50.66

5 2 900 45.13 22.55 29.99 48.03 46.63 47.26

synthetic 2 2 200 63.79 60.36 61.69 53.62 67.88 59.83
(no attr. 2 3 500 46.78 39.22 42.47 37.81 52.92 44.00
inheritance) 2 4 1000 34.03 19.20 24.49 27.96 41.78 33.44

2 5 2000 25.53 5.08 8.45 21.59 32.87 26.03

3 2 400 43.58 39.94 41.53 39.08 50.42 43.87
3 3 1000 24.66 10.31 14.50 21.85 33.31 26.33
3 4 3500 16.23 0.41 0.79 14.88 22.73 17.97

4 2 600 30.91 23.68 26.72 28.69 37.75 32.51
4 3 2500 15.23 1.34 2.46 15.03 22.35 17.96

5 2 900 23.38 13.59 17.14 23.09 30.01 26.04

Table 6.3: Performance of the hierarchical local and “flat” AdaBoost.MH on real text
corpora and synthetic data. Numbers in bold are statistically significantly better with
99% confidence.

Experimental results 110

dataset out- depth boost. “flat” hierarchical global
degree iter. hP hR hF1 hP hR hF1

20 newsgroups 3 2 500 75.81 75.23 75.51 81.32 77.31 79.26

reuters-21578 20 2 500 91.31 83.18 87.06 91.30 85.51 88.31

RCV1 V2 4.68 4 500 74.14 72.10 73.10 76.89 74.88 75.86

synthetic 2 2 200 70.76 66.60 68.30 76.93 75.76 76.22
(with attr. 2 3 500 67.25 51.82 58.35 76.38 72.28 74.21
inheritance) 2 4 1000 68.37 33.52 44.90 77.02 69.81 73.22

2 5 2000 71.24 12.27 20.88 78.96 67.38 72.70

3 2 400 58.46 49.60 53.47 66.19 61.13 63.45
3 3 1000 57.03 19.98 29.51 69.02 54.20 60.69
3 4 3500 57.61 1.37 2.67 71.68 49.03 58.22

4 2 600 50.81 35.03 41.35 60.42 51.02 55.25
4 3 2500 50.11 3.76 6.98 63.11 42.39 50.70

5 2 900 45.13 22.55 29.99 55.57 42.12 47.87

synthetic 2 2 200 63.79 60.36 61.69 64.75 67.54 65.95
(no attr. 2 3 500 46.78 39.22 42.47 48.92 54.69 51.53
inheritance) 2 4 1000 34.03 19.20 24.49 37.22 43.80 40.18

2 5 2000 25.53 5.08 8.45 29.95 35.81 32.61

3 2 400 43.58 39.94 41.53 46.17 50.32 48.02
3 3 1000 24.66 10.31 14.50 29.87 30.14 29.97
3 4 3500 16.23 0.41 0.79 21.96 21.87 21.91

4 2 600 30.91 23.68 26.72 34.82 35.43 35.01
4 3 2500 15.23 1.34 2.46 20.55 19.00 19.70

5 2 900 23.38 13.59 17.14 28.48 26.01 27.12

Table 6.4: Performance of the hierarchical global and “flat” AdaBoost.MH on real text
corpora and synthetic data. Numbers in bold are statistically significantly better with
99% confidence.

Experimental results 111

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

hP
 f

or
 th

e
hi

er
. l

oc
al

 a
lg

or
ith

m

hP for the flat algorithm

Flat vs. local: precision (hP)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

hR
 f

or
 th

e
hi

er
. l

oc
al

 a
lg

or
ith

m

hR for the flat algorithm

Flat vs. local: recall (hR)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

hF
-m

ea
su

re
 f

or
 th

e
hi

er
. l

oc
al

 a
lg

or
ith

m

hF-measure for the flat algorithm

Flat vs. local: hF-measure

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

hP
 f

or
 th

e
hi

er
. g

lo
ba

l a
lg

or
ith

m

hP for the flat algorithm

Flat vs. global: precision (hP)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

hR
 f

or
 th

e
hi

er
. g

lo
ba

l a
lg

or
ith

m

hR for the flat algorithm

Flat vs. global: recall (hR)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90

hF
-m

ea
su

re
 f

or
 th

e
hi

er
. g

lo
ba

l a
lg

or
ith

m

hF-measure for the flat algorithm

Flat vs. global: hF-measure

Figure 6.2: Performance comparison of the conventional “flat” algorithm with the hi-
erarchical approaches, local (top) and global (bottom), in hierarchical precision (left),
hierarchical recall (center), and hierarchical F-measure (right). All algorithms are exe-
cuted with AdaBoost.MH as a base learner. Each star point represents one of the 20
synthetic datasets (with and without attribute distribution inheritance); each square
point corresponds to one of the 3 real datasets. Points lying above the diagonal line
show the superior performance of the hierarchical approaches over the “flat” one.

higher values of recall comparing to the “flat” method. Moreover, additional training

data gives the opportunity to the global hierarchical algorithm to learn more accurate

models comparing to the “flat” method.

Synthetic data (see Section 6.1.4) allow us to study the behavior of the algorithms

subject to the size of a class hierarchy. The first conclusion we can draw is that increase

in out-degree has a negative effect on all algorithms both in terms of precision and

recall. Large out-degree corresponds to an enormous number of classes that the “flat”

and global algorithms have to deal with at once. It also increases, yet to a substantially

lesser degree, the number of classes the local method has to discriminate between in

each classification subtask. At the same time, increase in depth of a hierarchy has

no such straight-forward effect. When categories do not inherit attribute distributions

(Figure 6.1(b)), deeper hierarchies only increase the complexity of a classification task

Experimental results 112

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

hP
 f

or
 th

e
hi

er
. g

lo
ba

l a
lg

or
ith

m

hP for the hier. local algorithm

Local vs. global: precision (hP)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 20 30 40 50 60 70 80 90

hR
 f

or
 th

e
hi

er
. g

lo
ba

l a
lg

or
ith

m

hR for the hier. local algorithm

Local vs. global: recall (hR)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90

hF
-m

ea
su

re
 f

or
 th

e
hi

er
. g

lo
ba

l a
lg

or
ith

m

hF-measure for the hier. local algorithm

Local vs. global: hF-measure

Figure 6.3: Performance comparison of the local and global hierarchical approaches in hi-
erarchical precision (left), hierarchical recall (center), and hierarchical F-measure (right).
Both algorithms are executed with AdaBoost.MH as a base learner. Each star point
represents one of the 20 synthetic datasets (with and without attribute distribution in-
heritance); each square point corresponds to one of the 3 real datasets. Points lying
above the diagonal line show the superior performance of the hierarchical global over the
local approach.

and, therefore, correspond to lower values of precision and recall for all algorithms.

However, when the categories do inherit attribute distributions (Figure 6.1(a)), extended

training data in hierarchical approaches becomes extremely useful. As a result, the global

technique is able to improve its precision with depth. The local method also benefits from

extended training data, yet making more mistakes at lower levels. The “flat” approach

cannot take advantage of the extended data, but gets an increased chance of classifying

an instance in a correct neighborhood, since the related categories share quite a few

attributes. Hence, precision of the “flat” algorithm does not deteriorate, as opposed to

recall that decreases substantially. Overall, larger hierarchies (both in depth and out-

degree) imply bigger gain in performance of the hierarchical techniques over the “flat”

one.

6.3.2 Hierarchical global vs. local approaches

We now compare the performance of the hierarchical global vs. hierarchical local ap-

proaches. Table 6.5 presents the extracts of the relevant information from Table 6.3 and

Table 6.4, and Figure 6.3 summarizes the results plotting one point for each of the 20

synthetic and 3 real datasets used in the experiments. For most synthetic and one real

(RCV1 V2) tasks the global hierarchical approach outperforms the local method. In par-

ticular, the global algorithm is always superior to the local one in terms of precision (by

Experimental results 113

dataset out- depth boost. hierarchical local hierarchical global
degree iter. hP hR hF1 hP hR hF1

20 newsgroups 3 2 500 80.85 79.19 80.01 81.32 77.31 79.26

reuters-21578 20 2 500 90.75 87.54 89.11 91.30 85.51 88.31

RCV1 V2 4.68 4 500 72.19 75.99 74.03 76.89 74.88 75.86

synthetic 2 2 200 67.26 80.82 73.42 76.93 75.76 76.22
(with attr. 2 3 500 62.79 77.56 69.40 76.38 72.28 74.21
inheritance) 2 4 1000 61.93 75.83 68.18 77.02 69.81 73.22

2 5 2000 62.70 75.34 68.44 78.96 67.38 72.70

3 2 400 58.71 65.88 61.99 66.19 61.13 63.45
3 3 1000 56.85 60.97 58.81 69.02 54.20 60.69
3 4 3500 57.98 56.84 57.40 71.68 49.03 58.22

4 2 600 53.24 55.47 54.26 60.42 51.02 55.25
4 3 2500 52.67 48.84 50.66 63.11 42.39 50.70

5 2 900 48.03 46.63 47.26 55.57 42.12 47.87

synthetic 2 2 200 53.62 67.88 59.83 64.75 67.54 65.95
(no attr. 2 3 500 37.81 52.92 44.00 48.92 54.69 51.53
inheritance) 2 4 1000 27.96 41.78 33.44 37.22 43.80 40.18

2 5 2000 21.59 32.87 26.03 29.95 35.81 32.61

3 2 400 39.08 50.42 43.87 46.17 50.32 48.02
3 3 1000 21.85 33.31 26.33 29.87 30.14 29.97
3 4 3500 14.88 22.73 17.97 21.96 21.87 21.91

4 2 600 28.69 37.75 32.51 34.82 35.43 35.01
4 3 2500 15.03 22.35 17.96 20.55 19.00 19.70

5 2 900 23.09 30.01 26.04 28.48 26.01 27.12

Table 6.5: Performance of the hierarchical local and global AdaBoost.MH on real text
corpora and synthetic data. Numbers in bold are statistically significantly better with
99% confidence.

Experimental results 114

up to 16%) while slightly yielding in recall (by up to 8%) (Figure 6.3). Both algorithms

take advantage of extended training data. However, the global approach explores all the

categories simultaneously (in a global fashion) assigning only labels with high confidence

scores. The local method, on the other hand, uses only local information and, therefore,

is forced to make classification decisions at each internal node of a hierarchy, in general,

pushing most instances deep down. For example, on a ternary 4-level tree hierarchy the

local algorithm classifies 54.79% of test instances to the deepest level while the global

method assigns only 2.27% of instances to the leaf classes. This reflects the conservative

nature of the global approach comparing to the local one. Therefore, it should be the

method of choice for tasks where precision is the key measure of success. For example,

in the task of indexing biomedical articles with Medical Subject Headings (MeSH) (see

Section 7.1), high precision might be preferable to high recall so that searching the Med-

line library with MeSH terms retrieves only documents relevant to a user’s query. In this

case, the hierarchical global approach will be more appropriate to use for this task.

Increase in depth (d) of a class hierarchy raises exponentially the number of classes

(∼ kd) and, as a result, the difficulty of the classification task for the global approach.

It also adds an extra level of complexity for the local algorithm. On the other hand,

deeper hierarchies bring more training data allowing both algorithms to learn better

classification models for high level categories. This results in improved precision for the

global approach. The local algorithm, however, diminishes this improvement with errors

made on the additional level as opposed to the global method that mostly ignores low

levels since they do not provide enough data to learn reliable models. Consequently,

the global algorithm ends up with higher precision, but lower recall values comparing to

the local technique. Increase in out-degree (k) only slightly (linearly) complicates the

task for the local method while adding a significant number of categories (∼kd−1) to the

global method. This is reflected in higher decrease in precision and overall the smaller

advantage of the global algorithm on synthetic hierarchies with large out-degrees.

6.4 Summary

This chapter presents an experimental comparison of two hierarchical learning approaches,

the generalized local pachinko machine and the novel global hierarchically consistent al-

gorithm, with the conventional “flat” approach. The experiments demonstrate that both

hierarchical techniques outperform the “flat” method on almost all tested datasets, often

by a large margin. Moreover, the extent of the achieved improvement increases with

Experimental results 115

the size of a class hierarchy. Between the two hierarchical algorithms, the global one is

superior to the local on most synthetic and some real problems. In particular, the global

approach exhibits considerably higher precision, while slightly yielding in recall. There-

fore, we recommend the global learning algorithm for classification tasks where precision

is favored over recall and the local method for tasks where high recall is essential.

Chapter 7

Hierarchical text categorization in

bioinformatics

As an application area we have chosen bioinformatics in view of the fact that it is an

important, quickly developing area that has many text-related problems. More specif-

ically, we address the task of indexing biomedical articles with MeSH terms and two

genomics1 tasks, namely functional annotation of genes from biomedical literature and

gene expression analysis with background knowledge.

7.1 Indexing of biomedical literature with Medical

Subject Headings

As our first application we have chosen the task of indexing biomedical articles with Med-

ical Subject Headings (MeSH). MeSH is a manually built controlled vocabulary for the

biomedical domain where terms are arranged into several hierarchical structures called

MeSH Trees. We address this task as a hierarchical text categorization task with class

hierarchies derived from the MeSH vocabulary. In other words, we classify biomedical

articles from the Medline library into one or several keywords from a specified MeSH

Tree. This task represents an interesting and challenging real-world application for hier-

archical text categorization techniques developed in this research. MeSH indexing is an

important part of the Medline library. Articles from thousands of journals get indexed on

1Genomics is a new scientific discipline that studies genes and their functions. It is characterized
by high-throughput genome-wide experimental approaches combined with statistical and computational
techniques of bioinformatics for the analysis of the results.

116

Hierarchical text categorization in bioinformatics 117

a daily basis. Having articles annotated with carefully chosen Medical Subject Headings

helps users to quickly find relevant information in the ocean of millions of abstracts of-

fered by the Medline database. At the same time, MeSH embodies very large, deep class

hierarchies comprised of thousands of categories. Therefore, it is an excellent testbed for

hierarchical learning algorithms.

7.1.1 Motivation

The Medical Subject Headings thesaurus is used by the National Library of Medicine for

indexing articles from 4,800 of the world’s leading biomedical journals. This indexing

is essential for the search facilities of the Medline database. Using a Pubmed search

mechanism, a user can type a text query to retrieve all Medline articles containing the

words in the query. However, different terminology used by the authors and constantly

evolving biomedical vocabulary pose a real challenge for the users to precisely express

their information need. Formulating a good query that returns all and only relevant

references is a difficult task, particularly for unexperienced users or people who are

not specialists in the area of interest. MeSH indexing is intended to eliminate this

problem. The controlled vocabulary of MeSH is carefully designed by trained indexers

to represent biomedical concepts rather than English language words. One such concept

corresponding to a MeSH heading implies a number of linguistic variants that can be

found in manuscripts discussing this concept. As a result, a Pubmed search with MeSH

terms would return all articles relevant to a query concept even if the words themselves

do not occur in the texts. Furthermore, the Pubmed search engine can automatically

replace some of the common words entered by a user with the corresponding MeSH

headings, thus improving the search outcome.

Hundreds of thousands of articles need to be annotated every year. This requires

tremendous effort on the part of the trained indexers and, therefore, is a costly and

time-consuming process. Fully automatic or semi-automatic annotation techniques could

significantly reduce the costs and speed up the process. As a result, several research

studies have been conducted on this task [Cooper and Miller, 1998, Kim et al., 2001].

Unlike previous work, we address this problem from the hierarchical point of view.

We would like to observe that MeSH indexing calls for hierarchically consistent clas-

sification. Consistent classification will allow an article indexed with a term t to be

retrieved in a search with a term t̂, an ancestor of term t. For example, if a user is

looking for articles on primates, the search engine should return not only the articles

Hierarchical text categorization in bioinformatics 118

Animals [B01]
Chordata [B01.150]

Vertebrates [B01.150.900]
Mammals [B01.150.900.649]

Primates [B01.150.900.649.801]
Haplorhini [B01.150.900.649.801.400]

Hominidae [B01.150.900.649.801.400.350]
Gorilla gorilla [B01.150.900.649.801.400.350.375]

>> Humans [B01.150.900.649.801.400.350.400]
Pan paniscus [B01.150.900.649.801.400.350.600]
Pan troglodytes [B01.150.900.649.801.400.350.620]
Pongo pygmaeus [B01.150.900.649.801.400.350.650]

Figure 7.1: Part of the MeSH “Organisms” (B) hierarchical tree. The MeSH Tree num-
bers in square brackets determine the position of a subject heading in the hierarchy.

indexed with term “primates”, but also the articles indexed with the offspring concepts,

such as “gorilla”, “humans”, etc. Also, all MeSH leaf and non-leaf concepts are proper

terms to use in indexing. Therefore, our hierarchical learning algorithms presented in

Chapter 4, which produce consistent classification and allow internal class assignments,

are ideal candidates for this task.

7.1.2 Medical Subject Headings (MeSH)

Medical Subject Headings (MeSH) is a controlled vocabulary of the National Library of

Medicine (NLM)2. It consists of specialized terminology used for indexing, cataloging,

and searching for biomedical and health-related information and documents. The terms

mostly represent biomedical concepts and are arranged hierarchically from most general

to most specific in hierarchical structures called “MeSH Trees” of up to eleven levels

deep. There are 15 hierarchical structures representing different aspects: A for anatomic

terms, B for organisms, C for diseases, D for drugs and chemicals, etc. (the full list of

categories is shown in Table 7.1). Figure 7.1 shows an excerpt from the “Organisms”

hierarchy. At the top level, the hierarchies contain very general terms, such as “Animals”

and “Bacteria”. At lower levels, more specific terms are located, such as “Humans” and

“Streptococcus pneumoniae”. Although called trees, strictly speaking, the MeSH hier-

archical structures are not trees as any term may appear in several places in a hierarchy.

There is a total of 22,997 subject headings in MeSH (2005 edition). Along with the

main headings, also called descriptors, that characterize the subject matter, there are

2http://www.nlm.nih.gov/mesh/meshhome.html

Hierarchical text categorization in bioinformatics 119

A Anatomy
B Organisms
C Diseases
D Chemicals and Drugs
E Analytical, Diagnostic and Therapeutic Techniques and Equipment
F Psychiatry and Psychology
G Biological Sciences
H Physical Sciences
I Anthropology, Education, Sociology and Social Phenomena
J Technology and Food and Beverages
K Humanities
L Information Science
M Persons
N Health Care
Z Geographic Locations

Table 7.1: MeSH hierarchical trees.

qualifiers that are used together with descriptors to characterize a specific aspect of a

subject. For example, “drug effects” is a qualifier for subject “Streptococcus pneumo-

niae” to index articles that discuss the effects of drugs and chemicals associated with

Streptococcus pneumoniae. In addition, there are so called entry terms or see references.

These are synonyms or related terms linked to the corresponding subject headings, for

example, Vitamin C see Ascorbic Acid. Entry terms can be beneficial for novices or oc-

casional users not very familiar with the MeSH vocabulary to quickly locate a concept of

interest. As the biomedical field is changing, the MeSH thesaurus is constantly evolving

adopting new emerging concepts, discarding out-of-date terminology, and renaming the

existing headings. Every year an updated version of MeSH is published by the National

Library of Medicine.

The MeSH thesaurus is freely available from the NLM website. It is distributed elec-

tronically in two formats: XML and plain ASCII. Both formats include the information

on all descriptors and qualifiers stating the name of a term, its position in a hierarchy,

all possible qualifiers (for subject headings), cross-references, etc. The hierarchical struc-

ture of MeSH main headings is also available in a separate file mtrees2005.bin. This

file contains all subject headings and their positions in MeSH Trees. The following is an

example of the MeSH Trees file content that matches the structure shown in Figure 7.1:

Hierarchical text categorization in bioinformatics 120

Animals;B01

Chordata;B01.150

Vertebrates;B01.150.900

Mammals;B01.150.900.649

Primates;B01.150.900.649.801

Haplorhini;B01.150.900.649.801.400

Hominidae;B01.150.900.649.801.400.350

Gorilla gorilla;B01.150.900.649.801.400.350.375

Humans;B01.150.900.649.801.400.350.400

Pan paniscus;B01.150.900.649.801.400.350.600

Pan troglodytes;B01.150.900.649.801.400.350.620

Pongo pygmaeus;B01.150.900.649.801.400.350.650

Each entry includes a subject heading and a MeSH Tree number separated by a

semicolon. Since one subject heading can have multiple occurrences in the hierarchical

structures, several entries can correspond to one heading. A Tree number determines

the exact position of an entry in a hierarchy. The first letter of a Tree number specifies

a hierarchical tree (A-Z). The following numbers denote the position at each level of a

hierarchy from top to bottom. In this way, a concept has the Tree number of its parent

concept with three additional digits at the end to distinguish it from its siblings.

7.1.3 OHSUMED dataset

As a source of data we used a large test collection called OHSUMED [Hersh et al.,

1994]. It was obtained by William Hersh and colleagues for medical information retrieval

research. Later on, the corpus was utilized in the Text Retrieval Conference (TREC-9)

competition (Filtering Track). The dataset contains 348,566 references to biomedical

articles from the Medline library from 270 medical journals over a five-year period (1987-

1991). All references have the following information: title, abstract (possibly empty),

MeSH indexing terms, author, source, and publication type. Originally, the corpus was

designed for evaluation of information retrieval systems; therefore, 101 queries generated

by actual physicians in the course of patient care are provided along with the document

relevance judgement. However, it has also been widely used in the text categorization

research as the MeSH annotations provide a high-quality set of category labels. Since

Medical Subject Headings are arranged hierarchically and any article can be indexed

Hierarchical text categorization in bioinformatics 121

dataset class hierarchy number of documents number of
number of depth out- total in training testing attributes
categories degree dataset

OHSUMED B 949 10 2.23 71,181 13,944 15,011 2,245

OHSUMED F 673 7 3.38 40,789 7,926 8,692 3,177

Table 7.2: Characteristics of the OHSUMED data used in the experiments. All numbers
(except the total number of documents in dataset) are averaged over 4 trials.

with any number of headings, this collection represents an ideal testbed for hierarchical

multi-class multi-label text categorization techniques.

The references in the corpus are organized in 5 files by the year of publication. We

take advantage of this natural separation and obtain the training/test splits in a time-

sensitive manner, similar to what we do with the RCV1 V2 dataset. For OHSUMED,

we collect 4 splits with one year of data used for training and the following year of data

used for testing. Accordingly, the first split is comprised of 1987 articles (training set)

and 1988 articles (test set), the second split contains 1988 articles (training set) and 1989

articles (test set), and so on. We experimented with two MeSH hierarchical structures,

“Organisms”(B) and “Psychiatry & Psychology” (F), as representatives of fairly large

hierarchies with strong biomedical content. The category sets include only the main

headings ignoring all possible qualifiers. The datasets are summarized in Table 7.2.

7.1.4 Results

We apply both hierarchical local and global learning techniques described in Section 4

with AdaBoost.MH as a basic learner on the OHSUMED data. We compare the per-

formance of these algorithms with the “flat” version of AdaBoost.MH. All algorithms

are run on the identical settings: 4 training/test splits, the same attribute sets, 500

boosting iterations3. The results are presented in Table 7.3. Evidently, the results of

these experiments are in full agreement with the conclusions derived on the similar set

of experiments on textual and synthetic data described in Section 6. Both hierarchi-

cal algorithms significantly outperform the “flat” AdaBoost.MH on both MeSH Trees.

The second hierarchy, “Psychiatry & Psychology” (F), presents more challenge for all

3For the hierarchical local approach, AdaBoost.MH is executed for 500 iterations at each node of a
class hierarchy.

Hierarchical text categorization in bioinformatics 122

dataset “flat” hierarchical local hierarchical global
hP hR hF1 hP hR hF1 hP hR hF1

OHSUMED B 78.87 62.82 69.92 70.40 74.08 72.17 79.15 71.60 75.17

OHSUMED F 52.98 30.13 38.37 44.11 49.85 46.79 55.00 45.62 49.87

Table 7.3: Performance of the “flat”, hierarchical local, and hierarchical global Ad-
aBoost.MH on the OHSUMED data. Numbers in bold are statistically significantly
better with 99% confidence.

algorithms having larger out-degree and fewer training data per class. As a result, the

performance of all algorithms is considerably lower, but the differences in performance

between the “flat” and hierarchical methods are more pronounced reaching up to 11.5%.

In addition, the hierarchical global approach does better than “flat” in both precision

(by ∼0.3-2%) and recall (by ∼9-15%) while the local approach is defeated by “flat” in

precision (by ∼8-9%) being superior in recall (by ∼11-20%). Comparing the two hier-

archical algorithms, we can see that the global approach wins in precision by ∼8.5-11%,

but yields in recall by ∼2.5-4%. Overall, the global approach shows the best performance

surpassing the local algorithm by about 3% on each dataset.

These experiments demonstrate that the proposed hierarchical approaches can be

successfully applied to the task of automatic MeSH annotation of biomedical literature.

The application of these algorithms results in good quality annotations at least on some

MeSH hierarchical structures. More importantly, we experimentally show that the hier-

archical approaches are more suitable for this task being superior to the “flat” method

on all tested category hierarchies. Two obvious extensions can be made in future work

to improve the value of automatic annotations. First, more training data need to be ac-

cumulated, especially for low level categories. Second, the feature sets can be improved

by taking into account the background knowledge, such as biologically relevant n-grams

(n ≥ 2), named entities (e.g. chemical/drug names or medical procedures), etc.

7.2 Functional annotation of genes from biomedical

literature

Our second application concerns the task of functional annotation of genes [Kiritchenko

et al., 2004, Kiritchenko et al., 2005a]. We propose a system to classify genes/gene

Hierarchical text categorization in bioinformatics 123

products into Gene Ontology (GO) terms based on the classification of documents from

the Medline library4 that describe the genes. The purpose of this task is to retrieve

the known functionality of a group of genes from the literature and translate it into a

controlled vocabulary of the Gene Ontology (see Figure 7.2).

When new information about genes is discovered, it typically becomes known to the

scientific community through a journal publication. Thus, an electronic library such as

Medline represents a vital resource of most up-to-date results achieved in biomedical

sciences. Our goal is to use this resource to find the functional information for a given

group of genes.

We address this task in two steps: learning and classification. In the first step (learn-

ing), we use annotations of well-known genes from genetic databases (e.g. SGD) to collect

training data that consist of Gene Ontology terms manually assigned to the genes and

corresponding Medline references that support these assignments. Then, we learn a clas-

sifier on these training data. In the second step (classification), we use the classifier to

annotate less studied genes whose function assignments are missing in the database. For

this, we search the Medline library for the documents relevant to the genes and classify

these documents into one or several Gene Ontology terms.

Gene Ontology [Ashburner et al., 2000] constitutes a hierarchy of carefully chosen

terms that describe all possible gene/gene product functionalities. By classifying biomed-

ical articles associated with a gene into GO terms, we attempt to retrieve the biological

functions that the gene performs in a given organism. Gene function is an essential

characteristic of genes required for understanding many processes in a living organism.

Therefore, information obtained by the proposed classification system is essential for life

scientists in their everyday activities. In addition, by using GO terms as the outcomes of

classification, we achieve yet another goal of converting diverse vocabularies introduced

by the authors of publications into one standardized terminology.

7.2.1 Motivation

The problem of functional annotation of genes is of great importance for biomedical and

bioinformatics communities. As has been shown in many studies, gene mutation is the

primary cause of many diseases including cancer and hemophilia [Burke, 2003,Wooster

and Weber, 2003]. For some common diseases, such as asthma, diabetes or Alzheimer’s

4Not all entries in the Medline database have an access to the full texts. Therefore, we use only titles
and abstracts of the articles.

Hierarchical text categorization in bioinformatics 124

biological

experiment

text

categorization

gene

list

Gene

Ontology

GO codes

for genes’

functions

papers with

genes’

characteristics

Figure 7.2: Functional annotation process. Genes’ functions are determined in biological
experiments and stated in scientific publications. The goal of our task (in the dashed
box) is to retrieve these functions and translate them into corresponding GO codes.

disease, both genetic and environmental factors play an important role [Guttmacher and

Collins, 2002,Burke, 2003]. Genomics research is aimed, among other things, at study-

ing the genes responsible for diseases, their important variations, their interactions, and

their behavior under different conditions, leading us to understanding the underlying

mechanisms of these diseases and discovering efficient treatment. Our work could help

biologists in genomics research by providing them with relevant information automati-

cally extracted from scientific literature and structured in a standardized way.

In many genomics studies one of the major steps is the gene expression analysis us-

ing high-throughput DNA microarrays. Measuring the expression profiles of genes from

normal and disease tissues or from the same tissue exposed to different conditions can

help discover genes responsible for the disease. It can also shed light on the functionality

of genes whose role was previously unknown or ESTs (Expressed Sequence Tags). Tra-

ditionally, most computational research on analyzing gene expression data has focused

on working with microarray data alone, using statistical [Eisen et al., 1998] or data min-

ing [Furey et al., 2000,Hvidsten et al., 2003] tools. However, raw gene expression data are

very hard to analyze even for an experienced scientist. On the other hand, there exists

a wealth of information pertaining to the function and behavior of genes, described in

papers and reports. Most of these are available on-line and could potentially be useful

in the analysis of gene expression, if we had a way of harvesting this information and

combining it synergistically with the knowledge acquired from the microrray data exper-

iments. Specifically, our research is aimed at providing molecular biologists with known

functional information on genes used in the experiments in order to make microarray

Hierarchical text categorization in bioinformatics 125

results and their analysis more biologically meaningful.

Another important aspect of any genomics study is the validation step. To become

widely accepted, new discoveries have to be validated by further biological experiments

or confirmed by related research. One of the common practices for validation is to check

scientific literature for similar results. For example, suppose that in an Alzheimer’s study

several genes were identified as highly related to the disease. Then, the literature search of

related research showed that some of these genes have already been known as associated

with other neurological disorders. This fact would be a supporting evidence for the results

of the Alzheimer’s study. However, such validation requires extensive literature search,

which is most often done manually. Automatic text analysis techniques can effectively

replace manual effort in this area.

Even though many genes for well-studied organisms, such as Escherichia coli or Sac-

charomyces cerevisiae, have been already annotated in specialized databases (EcoCyc,

SGD), information on many other genes currently can be found only in scientific pub-

lications. Public databases are created and curated manually; thus, they cannot keep

up with an overwhelming number of new discoveries published on a daily basis. Fur-

thermore, these databases often use different vocabularies to describe gene functionality,

which raises an additional challenge for integrating the results. Consequently, genomics

databases are not always adequate to find the requisite information. Therefore, we need

to apply text mining and categorization techniques to retrieve up-to-date information

from biomedical literature and translate it into a standardized vocabulary to help life

scientists in their everyday activities. At the same time, the same process can be used

as a tool to assist in updating and curating databases.

The present research continues the work on automatic functional annotation of genes

from biomedical literature (e.g. [Raychaudhuri et al., 2002, Catona et al., 2004]), de-

scribed in Section 3.5.5, by introducing the hierarchical text categorization techniques

to the problem. The hierarchical techniques explore the additional information on class

relations, which may lead to an improved performance of a classification system. At the

same time, hierarchical categorization allows a trade-off between classification precision

and the required level of details on gene functionality.

7.2.2 Gene Ontology

We employ hierarchical text categorization techniques described in Section 4 to classify

Medline articles associated with given genes into one or several functional categories.

Hierarchical text categorization in bioinformatics 126

These functional categories come from the Gene Ontology (GO) [Ashburner et al., 2000].

In biology controlled vocabularies for different subdomains are traditionally designed in

the form of ontologies [Rison et al., 2000,Stevens et al., 2000]. Gene Ontology is quickly

becoming a standard for gene/protein function annotation, and therefore, it is our choice

for the hierarchy of categories.

Gene Ontology describes gene products in terms of their associated molecular func-

tions, biological processes, and cellular components in a species-independent manner

[Ashburner et al., 2000]. Molecular function describes activities that are performed by

individual gene products or complexes of gene products. Examples of high-level molecu-

lar functions are translation activity, catalytic activity and transporter activity; example

of low-level function is vitamin B12 transporter activity. A biological process consists of

several distinct steps and is accomplished by sequences of molecular functions. Examples

of high-level biological processes are development, behavior and physiological process; ex-

ample of low-level process is tissue regeneration. A cellular component is a component

of a cell, such as nucleus, membrane, or chromosome, associated with a gene product.

The Gene Ontology consists of three hierarchies, one for each of the three aspects.

Each hierarchy is a directed acyclic graph (DAG). Each GO term is given a unique iden-

tifier called a GO code (for example, the term “metabolism” has code “GO:0008152”).

Figure 7.3 shows a part of the biological process hierarchy.

The hierarchies are contained in 3 files: function.ontology, gene.ontology, and

component.ontology, respectively. Each line in these files corresponds to one GO code.

The format of the line is as follows:

< | % term [; db cross ref]* [; synonym:text]* [< | % term]*

where “|” represents “or” and “[]*” indicates an optional item that can be repeated

several times. The items have the following meaning:

• % represents the “is-a” relationships;

• < represents the “part-of” relationships;

• “db cross ref” is a general database cross reference, which refers to an identical

object in another database;

• “synonym:text” is a list of synonyms in textual format.

The items on a line are separated by a semi-colon.

Hierarchical text categorization in bioinformatics 127

biological process

cellular process physiological process

regulation of cellular

process

cell communication

cell growth and/or

maintenance

metabolism

cell invasion

cell growth

biosynthesis

metabolism resulting

in cell growth

is-a

is-a
is-ais-a

is-a

is-a

is-a

is-ais-a

is-a

is-ais-a
is-a

is-a

is-a

part-of

part-of
part-of

GO:0008150

GO:0009987 GO:0007582

GO:0050794 GO:0007154

GO:0001558

regulation of cell

growth

cell-cell signaling
GO:0030260 GO:0007267

GO:0008152

GO:0009058

GO:0001557

cellular physiological

process GO:0050875

GO:0008151

GO:0016049

GO:0009826

unidimensional cell

growth

Figure 7.3: Part of the biological process hierarchy of the Gene Ontology. The hierarchy
is represented as a directed acyclic graph. Two types of relationships between categories
exist: “is-a” relation is shown as bold arrows, “part-of” relation is shown as regular
arrows. Each term has a unique identifier (GO code).

The hierarchical relationships are represented by indentation and special symbols %

(for “is-a” relationships) and < (for “part-of” relationships). For example,

%term0

%term1 % term2

means that term1 is a subclass of term0 and also a subclass of term2;

%term0

%term1 < term2 < term3

means that term1 is a subclass of term0 and also a part-of of term2 and term3.

Here is an excerpt from file process.ontology:

%rhythmic behavior ; GO:0007622

%circadian rhythm ; GO:0007623

%circadian sleep/wake cycle ; GO:0042745 % sleep ; GO:0030431

Hierarchical text categorization in bioinformatics 128

<circadian sleep/wake cycle\, non-REM sleep ; GO:0042748

<circadian sleep/wake cycle\, REM sleep ; GO:0042747

<circadian sleep/wake cycle\, wakefulness ; GO:0042746

<regulation of circadian sleep/wake cycle ; GO:0042749

% regulation of sleep ; GO:0045187

%eclosion rhythm ; GO:0008062 < eclosion ; GO:0007562

<entrainment of circadian clock ; GO:0009649

% response to photoperiod ; GO:0009648

%locomotor rhythm ; GO:0045475 ; synonym:circadian locomotor

activity rhythm % locomotory behavior ; GO:0007626

The definitions of all terms are available in a separate file.

Each gene product has one or more molecular functions, is used in one or more

biological processes, and might be associated with one or more cellular components.

The GO Consortium assigns GO terms to gene products of several organisms, such as

yeast (Saccharomyces cerevisiae), fly (Drosophila melanogaster), worm (Caenorhabditis

elegans), human, and many others. More organisms are added regularly.

7.2.3 Genomic databases as the source of training data

Several databases, such as SGD, MGD, etc., have information on genes of a particular

species. For example, the Saccharomyces Genome Database (SGD) [Dolinski et al., 2003]

contains the sequences of yeast genes and proteins; descriptions and classifications of their

biological roles, molecular functions, and subcellular localizations (GO codes); and links

to literature information. We can use this information on well-studied genes to train a

classification system in order to automatically fill in the gaps in annotations for more

recently studied genes.

We start with the yeast genome. Yeast (Saccharomyces cerevisiae) is a relatively

simple, well-studied organism. Its genome has been fully sequenced and contains about

6000 genes. The yeast gene names have been standardized due to the effort by SGD

curators. As of Jan. 6, 2005, 6459 yeast gene products have been assigned GO codes

with 4865 references included as evidence.

All GO annotations for yeast gene products (for protein or RNA) are contained in

file gene_association.sgd (see Table 7.4). The gene_association.sgd file uses the

standard file format for gene association files of the Gene Ontology (GO) Consortium.

Each line in this file corresponds to one gene/GO code pair and has the following tab

Hierarchical text categorization in bioinformatics 129

D
B

I
D

S
y
m
b
o
l

¬
G
O

I
D

(
*
)

R
e
f
e
r
e
n
c
e

(
*
*
)

E
v
i
d
e
n
c
e

W
i
t
h
/

A
s
p
e
c
t

N
a
m
e

S
y
n
o
n
y
m

T
y
p
e

T
a
x
o
n

D
a
t
e

A
s
s
i
g
n
e
d

F
r
o
m

S
G

D
S
0
0
0
7
2
8
7

1
5
S
_
R
R
N
A

G
O

:0
0
0
3
7
3
5

S
G
D
_
R
E
F
:
3
7
7
3
5
|
P
M
I
D
:
6
2
6
1
9
8
0

IS
S

F
1
5
S
_
r
R
N
A
|
1
5
S
_
R
R
N
A
_
2

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
3

S
G

D
S
G

D
S
0
0
0
7
2
8
7

1
5
S
_
R
R
N
A

G
O

:0
0
0
6
4
1
2

S
G
D
_
R
E
F
:
3
7
7
3
6
|
P
M
I
D
:
6
2
8
0
1
9
2

IG
I

P
1
5
S
_
r
R
N
A
|
1
5
S
_
R
R
N
A
_
2

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
3

S
G

D
S
G

D
S
0
0
0
7
2
8
7

1
5
S
_
R
R
N
A

G
O

:0
0
0
5
7
6
1

S
G
D
_
R
E
F
:
3
7
7
3
5
|
P
M
I
D
:
6
2
6
1
9
8
0

IS
S

C
1
5
S
_
r
R
N
A
|
1
5
S
_
R
R
N
A
_
2

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
3

S
G

D
S
G

D
S
0
0
0
7
2
8
7

1
5
S
_
R
R
N
A

G
O

:0
0
4
2
2
5
5

S
G
D
_
R
E
F
:
1
2
6
9
9
|
P
M
I
D
:
2
1
6
7
4
3
5

IG
I

P
1
5
S
_
r
R
N
A
|
1
5
S
_
R
R
N
A
_
2

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
3

S
G

D
S
G

D
S
0
0
0
7
2
8
8

2
1
S
_
R
R
N
A
_
3

G
O

:0
0
4
2
2
5
5

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IM
P

P
2
1
S
_
r
R
N
A
_
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
8

2
1
S
_
R
R
N
A
_
3

G
O

:0
0
0
3
7
3
5

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IM
P

F
2
1
S
_
r
R
N
A
_
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
8

2
1
S
_
R
R
N
A
_
3

G
O

:0
0
0
3
7
3
5

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IS
S

F
2
1
S
_
r
R
N
A
_
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
8

2
1
S
_
R
R
N
A
_
3

G
O

:0
0
0
5
7
6
1

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

ID
A

C
2
1
S
_
r
R
N
A
_
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
8

2
1
S
_
R
R
N
A
_
3

G
O

:0
0
0
6
4
1
2

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IM
P

P
2
1
S
_
r
R
N
A
_
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
8

2
1
S
_
R
R
N
A
_
3

G
O

:0
0
0
6
4
1
2

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IS
S

P
2
1
S
_
r
R
N
A
_
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
9

2
1
S
_
R
R
N
A
_
4

G
O

:0
0
4
2
2
5
5

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IM
P

P
2
1
S
_
r
R
N
A
_
4

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
9

2
1
S
_
R
R
N
A
_
4

G
O

:0
0
0
3
7
3
5

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IM
P

F
2
1
S
_
r
R
N
A
_
4

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
9

2
1
S
_
R
R
N
A
_
4

G
O

:0
0
0
3
7
3
5

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IS
S

F
2
1
S
_
r
R
N
A
_
4

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
9

2
1
S
_
R
R
N
A
_
4

G
O

:0
0
0
5
7
6
1

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

ID
A

C
2
1
S
_
r
R
N
A
_
4

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
9

2
1
S
_
R
R
N
A
_
4

G
O

:0
0
0
6
4
1
2

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IM
P

P
2
1
S
_
r
R
N
A
_
4

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
7
2
8
9

2
1
S
_
R
R
N
A
_
4

G
O

:0
0
0
6
4
1
2

S
G
D
_
R
E
F
:
3
7
7
5
2
|
P
M
I
D
:
6
7
5
9
8
7
2

IS
S

P
2
1
S
_
r
R
N
A
_
4

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
3
0
7
2
1

S
G

D
S
G

D
S
0
0
0
4
6
6
0

A
A

C
1

G
O

:0
0
0
5
7
4
3

S
G
D
_
R
E
F
:
1
2
0
3
1
|
P
M
I
D
:
2
1
6
7
3
0
9

T
A

S
C

A
D

P
/
A
T

P
tr

a
n
sl

o
c
a
to

r
Y

M
R

0
5
6
C

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
1
1
8

S
G

D
S
G

D
S
0
0
0
4
6
6
0

A
A

C
1

G
O

:0
0
0
6
8
5
4

S
G
D
_
R
E
F
:
1
2
0
3
1
|
P
M
I
D
:
2
1
6
7
3
0
9

ID
A

P
A

D
P
/
A
T

P
tr

a
n
sl

o
c
a
to

r
Y

M
R

0
5
6
C

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
1
1
8

S
G

D
S
G

D
S
0
0
0
4
6
6
0

A
A

C
1

G
O

:0
0
0
5
4
7
1

S
G
D
_
R
E
F
:
1
2
0
3
1
|
P
M
I
D
:
2
1
6
7
3
0
9

ID
A

F
A

D
P
/
A
T

P
tr

a
n
sl

o
c
a
to

r
Y

M
R

0
5
6
C

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
2
1
3

S
G

D
S
G

D
S
0
0
0
0
2
8
9

A
A

C
3

G
O

:0
0
0
5
7
4
3

S
G
D
_
R
E
F
:
1
3
6
0
6
|
P
M
I
D
:
1
9
1
5
8
4
2

T
A

S
C

A
D

P
/
A
T

P
tr

a
n
sl

o
c
a
to

r
Y
B
R
0
8
5
W
|
A
N
C
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
1
1
8

S
G

D
S
G

D
S
0
0
0
0
2
8
9

A
A

C
3

G
O

:0
0
0
6
8
5
4

S
G
D
_
R
E
F
:
1
3
6
0
6
|
P
M
I
D
:
1
9
1
5
8
4
2

IM
P

P
A

D
P
/
A
T

P
tr

a
n
sl

o
c
a
to

r
Y
B
R
0
8
5
W
|
A
N
C
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
1
1
8

S
G

D
S
G

D
S
0
0
0
0
2
8
9

A
A

C
3

G
O

:0
0
0
5
4
7
1

S
G
D
_
R
E
F
:
1
3
6
0
6
|
P
M
I
D
:
1
9
1
5
8
4
2

IM
P

F
A

D
P
/
A
T

P
tr

a
n
sl

o
c
a
to

r
Y
B
R
0
8
5
W
|
A
N
C
3

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
2
1
3

S
G

D
S
G

D
S
0
0
0
3
9
1
6

A
A

D
1
0

G
O

:0
0
0
8
3
7
2

S
G
D
_
R
E
F
:
3
2
9
2
6

N
D

C
a
ry

l-
a
lc

o
h
o
l
d
e
h
y
d
ro

g
e
n
a
se

Y
J
R

1
5
5
W

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
1
1
9

S
G

D
(p

u
ta

ti
v
e
)

S
G

D
S
0
0
0
3
9
1
6

A
A

D
1
0

G
O

:0
0
1
8
4
5
6

S
G
D
_
R
E
F
:
3
0
8
8
|
P
M
I
D
:
1
0
5
7
2
2
6
4

IS
S

F
a
ry

l-
a
lc

o
h
o
l
d
e
h
y
d
ro

g
e
n
a
se

Y
J
R

1
5
5
W

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
2
0
9
0
2

S
G

D
(p

u
ta

ti
v
e
)

S
G

D
S
0
0
0
3
9
1
6

A
A

D
1
0

G
O

:0
0
0
6
0
8
1

S
G
D
_
R
E
F
:
3
0
8
8
|
P
M
I
D
:
1
0
5
7
2
2
6
4

IS
S

P
a
ry

l-
a
lc

o
h
o
l
d
e
h
y
d
ro

g
e
n
a
se

Y
J
R

1
5
5
W

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
2
0
9
0
2

S
G

D
(p

u
ta

ti
v
e
)

S
G

D
S
0
0
0
5
2
7
5

A
A

D
1
4

G
O

:0
0
0
8
3
7
2

S
G
D
_
R
E
F
:
3
2
9
2
6

N
D

C
a
ry

l-
a
lc

o
h
o
l
d
e
h
y
d
ro

g
e
n
a
se

Y
N

L
3
3
1
C

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
1
1
9

S
G

D
(p

u
ta

ti
v
e
)

S
G

D
S
0
0
0
5
2
7
5

A
A

D
1
4

G
O

:0
0
1
8
4
5
6

S
G
D
_
R
E
F
:
3
0
8
8
|
P
M
I
D
:
1
0
5
7
2
2
6
4

IS
S

F
a
ry

l-
a
lc

o
h
o
l
d
e
h
y
d
ro

g
e
n
a
se

Y
N

L
3
3
1
C

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
2
0
9
0
2

S
G

D
(p

u
ta

ti
v
e
)

S
G

D
S
0
0
0
5
2
7
5

A
A

D
1
4

G
O

:0
0
0
6
0
8
1

S
G
D
_
R
E
F
:
3
0
8
8
|
P
M
I
D
:
1
0
5
7
2
2
6
4

IS
S

P
a
ry

l-
a
lc

o
h
o
l
d
e
h
y
d
ro

g
e
n
a
se

Y
N

L
3
3
1
C

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
2
0
9
0
2

S
G

D
(p

u
ta

ti
v
e
)

S
G

D
S
0
0
0
5
5
2
5

A
A

D
1
5

G
O

:0
0
0
8
3
7
2

S
G
D
_
R
E
F
:
3
2
9
2
6

N
D

C
a
ry

l-
a
lc

o
h
o
l
d
e
h
y
d
ro

g
e
n
a
se

Y
O

L
1
6
5
C

g
e
n
e

ta
x
o
n
:4

9
3
2

2
0
0
1
0
1
1
9

S
G

D
(p

u
ta

ti
v
e
)

T
ab

le
7.

4:
G

O
an

n
ot

at
io

n
s

fo
r

ye
as

t
ge

n
es

(f
or

p
ro

te
in

or
R

N
A

)
co

n
ta

in
ed

in
fi
le

ge
n
e

as
so

ci
at

io
n
.s

gd
(a

n
ex

ce
rp

t)
.

C
ol

u
m

n
s

“G
O

ID
(*

)”
an

d
“R

ef
er

en
ce

(*
*)

”
p
ro

v
id

e
th

e
re

q
u
ir

ed
in

fo
rm

at
io

n
to

fo
rm

a
tr

ai
n
in

g
se

t.

Hierarchical text categorization in bioinformatics 130

delimited fields:

1. DB - database contributing the file (always “SGD” for this file)

2. DB_Object_ID - SGDID (the gene ID in the SGD)

3. DB_Object_Symbol - a standard gene name (e.g. CDC28, COX2) if it has been

conferred; a systematic name (e.g. YAL001C, YGR116W, YAL034W-A) otherwise

4. NOT (optional)- ’NOT’ qualifier for a GO annotation, when needed

5. GO ID - unique numeric identifier for the GO term, i.e. GO code

6. DB:Reference(|DB:Reference) - the reference associated with the GO annota-

tion; the first item is the reference ID in the SGD, the second item (in parentheses)

is the reference ID in the Medline database

7. Evidence - the evidence code for the GO annotation

8. With (or) From (optional) - any With or From qualifier for the GO annotation

9. Aspect - which ontology the GO term belongs in (F - molecular function, P -

biological process, C - cellular component)

10. DB_Object_Name(|Name) (optional) - a name for the gene product in words, e.g.

”acid phosphatase”

11. DB_Object_Synonym(|Synonym) (optional) - a systematic name along with any

other names, including aliases (but not including the standard name, which will be

in Column 3 if one exists) used for the gene

12. DB_Object_Type - type of object annotated, e.g. gene, protein, etc.

13. taxon(|taxon) - taxonomic identifier of species encoding gene product

14. Date - date GO annotation was made

15. Assigned_by - source of the annotation (always “SGD” for this file)

Column 7 provides the information on the kind of evidence that is found in the cited

source to support the association between the gene product and the GO term. The

possible kinds are

Hierarchical text categorization in bioinformatics 131

• IMP - inferred from mutant phenotype

• IGI - inferred from genetic interaction

• IPI - inferred from physical interaction

• ISS - inferred from sequence similarity

• IDA - inferred from direct assay

• IEP - inferred from expression pattern

• IEA - inferred from electronic annotation

• TAS - traceable author statement

• NAS - non-traceable author statement

• ND - no biological data available

• IC - inferred by curator

Each line in the gene_association.sgd file corresponds to an instance in the cate-

gorization task. From this file we collect the IDs of Medline articles associated with the

genes and Gene Ontology codes manually assigned to these genes. Using this information

we form a training set as described in the next section.

7.2.4 Learning process

The whole process of collecting training data, learning a classifier, and using it to cate-

gorize unseen data is summarized below (Figure 7.4).

Learning. We learn a classifier from the information on fully annotated genes in a

genomic database (e.g. SGD) in the following steps:

1. retrieve the GO codes and the IDs of Medline articles associated with the genes

from the database;

2. retrieve the corresponding articles from the Medline library;

3. form a training set consisting of the words from the retrieved articles as features

and the corresponding GO codes as categories;

Hierarchical text categorization in bioinformatics 132

abstract

genetic database (e.g. SGD)

Medline

gene name
classifier

GO codes

YDR341C(e.g. YDR341C)

PMID

PMID

PMID

abstract

features categories

gene ID PMID GO

Medline

training data

classifier

a) Learning

b) Classification

Figure 7.4: Learning (a) and classification (b) processes in automatic functional annota-
tion of genes from biomedical literature.

Hierarchical text categorization in bioinformatics 133

Gene Gene Ontology code/term (*) Medline reference (**)

YJR096W GO:0019566 arabinose metabolism PMID:12271459 Traff, K.L., Jonsson, L.J., Hahn-Hagerdal, B.
Putative xylose and arabinose reductases in
Saccharomyces cerevisiae.
Yeast. 2002 Oct;19(14):1233-41.

YJR096W GO:0042732 D-xylose metabolism PMID:12271459 Traff, K.L., Jonsson, L.J., Hahn-Hagerdal, B.
Putative xylose and arabinose reductases in
Saccharomyces cerevisiae.
Yeast. 2002 Oct;19(14):1233-41.

YMR056C GO:0006854 ATP/ADP exchange PMID:2167309 Gawaz, M., Douglas, M.G., Klingenberg, M.
Structure-function studies of adenine
nucleotide transport in mitochondria. II.
Biochemical analysis of distinct AAC1 and
AAC2 proteins in yeast. J Biol Chem. 1990
Aug 25;265(24):14202-8.

YGR054W GO:0006413 translational initiation PMID:12133843 Zoll, W.L., Horton, L.E., Komar, A.A.,
Hensold, J.O., Merrick, W.C. Characterization
of mammalian eIF2A and identification of the
yeast homolog. J Biol Chem. 2002 Oct 4;
277(40):37079-87. Epub 2002 Jul 19.

YKR079C GO:0042779 removal of tRNA PMID:12711671 Takaku, H., Minagawa, A., Takagi, M.,
3’-trailer sequence Nashimoto, M. A candidate prostate cancer

susceptibility gene encodes tRNA 3’-processing
endoribonuclease. Nucleic Acids Res. 2003
May 1;31(9):2272-8.

.

YLL057C GO:0006790 sulfur metabolism PMID:10482536 Hogan, D.A., Auchtung, T.A., Hausinger, R.P.
Cloning and characterization of a sulfonate/
alpha-ketoglutarate dioxygenase from
Saccharomyces cerevisiae. J Bacteriol. 1999
Sep;181(18):5876-9.

Table 7.5: Information on yeast genes from the SGD database. Medline articles with
corresponding IDs (**) along with their GO labels (*) form a training set.

4. learn a classifier using hierarchical text categorization techniques.

Classification. After the classifier has been learned, we can apply it to genes that

do not have annotations in the database:

1. retrieve all Medline articles that mention the genes (possibly using all their aliases

to improve recall);

2. classify the retrieved articles into GO codes with the classifier;

3. assign the most promising codes to the genes (the most promising codes can be

identified as the majority codes from article classification or by using more complex

techniques involving background knowledge).

Hierarchical text categorization in bioinformatics 134

Features: bag-of-words from Medline articles (**) Categories: Gene
Ontology codes (*)

Putative xylose and arabinose reductases in Saccharomyces cerevisiae. GO:0019566,
Traff, K.L., Jonsson, L.J., Hahn-Hagerdal B. GO:0042732

Saccharomyces cerevisiae mutants, in which open reading frames (ORFs) displaying
similarity to the aldo-keto reductase GRE3 gene have been deleted, were investigated
regarding their ability to utilize xylose and arabinose. Reduced xylitol formation
from D-xylose in gre3 mutants of S. cerevisiae suggests that Gre3p is the major
D-xylose-reducing enzyme in S. cerevisiae. . . .

Structure-function studies of adenine nucleotide transport in mitochondria. GO:0006854
II. Biochemical analysis of distinct AAC1 and AAC2 proteins in yeast.
Gawaz M., Douglas M.G., Klingenberg, M.

AAC1 and AAC2 genes in yeast each encode functional ADP/ATP carrier (AAC)
proteins of the mitochondrial inner membrane. In the present study, mitochondria
harboring distinct AAC proteins and the pet9 Arg96 to HIS mutant (Lawson, J.,
Gawaz, M., Klingenberg, M., and Douglas, M. G. (1990) J. Biol. Chem. 265,
14195-14201) protein have been characterized. In addition, properties of the
different AAC proteins have been defined following reconstitution into
proteoliposomes. . . .
.

Table 7.6: Training set formed from the information on yeast genes from the SGD
database: Medline articles (**) provide “bag-of-words” features, GO codes (*) provide
category labels.

To assemble the data, we exploit the SGD database (Table 7.4) to collect the IDs of

Medline articles associated with the yeast genes and their corresponding Gene Ontology

codes (Table 7.5). Then, we retrieve the corresponding articles from the Medline library.

The abstracts of the articles and manually assigned GO labels form a dataset (Table 7.6).

We treat every aspect of the Gene Ontology - biological process (P), molecular function

(F), and cellular component (C) - separately, putting together 3 datasets: MEDLINE

P, MEDLINE F, and MEDLINE C. Before applying the proposed system in the real-life

settings to discover the functionality of poorly characterized genes, we set up a series

of experiments to assess the quality of the classification system we can learn with the

hierarchical text categorization techniques. For this, the hierarchical approaches are

evaluated on annotated genes by splitting the available data into training and test sets

with two thirds of data reserved for training and one third for testing. Ten such splits

are generated randomly, and the results of the experiments are averaged over 10 trials.

The data are preprocessed in the same way as all text collections used in the previous

experiments (Chapter 6). The parameters of the three datasets are given in Table 7.7.

The collected data are very high-dimensional and sparse, which is a common situation

for textual data. As in the previous experiments (Chapter 6), we discard the word stems

Hierarchical text categorization in bioinformatics 135

dataset class hierarchy number of documents number of
number of depth out- total in training testing attributes
categories degree dataset

MEDLINE P 1,025 12 5.41 3,305 2,309 996 2,793

MEDLINE F 1,078 10 10.29 2,468 1,727 741 2,448

MEDLINE C 331 8 6.45 2,284 1,613 671 2,957

Table 7.7: Characteristics of the MEDLINE data used in the experiments. The number
of training and test documents are averaged over 10 trials.

dataset “flat” hierarchical local hierarchical global
hP hR hF1 hP hR hF1 hP hR hF1

MEDLINE P 62.41 8.58 15.06 70.86 50.95 59.27 64.61 54.83 59.31

MEDLINE F 43.18 4.89 8.78 51.14 37.68 43.36 59.01 28.22 38.17

MEDLINE C 79.56 30.65 44.18 78.69 66.50 72.07 77.25 69.84 73.35

Table 7.8: Performance of the “flat”, hierarchical local, and hierarchical global Ad-
aBoost.MH on the MEDLINE data. Numbers in bold are statistically significantly better
with 99% confidence.

that appear in fewer than n abstracts5 and then rely on the AdaBoost.MH learning

algorithm to pick up the most relevant terms to use in classification. 500 iterations of

AdaBoost.MH are performed for the “flat” learner, the hierarchical global learner, and

each subtask of the hierarchical local learner.

7.2.5 Results

Experiments with both hierarchical learning approaches described in Chapter 4 (with

AdaBoost.MH as a base learner) are carried out on the MEDLINE data. In addition,

the “flat” version of AdaBoost.MH is run on the same data to investigate the advantages

of the hierarchical approaches over the “flat” method on the functional annotation task.

The results are presented in Table 7.8.

The first observation we make is that both hierarchical algorithms outperform the

5The number n is chosen to keep the data at a manageable size and equals to 6 for the MEDLINE
P and the MEDLINE F collections and to 4 for the MEDLINE C dataset.

Hierarchical text categorization in bioinformatics 136

“flat” method by a large margin on all three ontologies. The absolute differences in

performance range from 28% on MEDLINE C dataset to 44% on MEDLINE P dataset.

Both hierarchical algorithms are superior to “flat” in recall by ∼23-46%. This is in

particular noticeable on the first two datasets, MEDLINE P and MEDLINE F. These

datasets are very hard for the “flat” method to deal with having more than a thousand

categories and very few training data. As a result, the “flat” method encounters much

difficulty in learning reliable models and ends up with extremely low recall values. The

hierarchical algorithms, on the other hand, benefit a great deal from having additional

training data. The ontologies of such scale (10 and 12 levels deep) allow to populate high-

level categories with hundreds of additional labeled examples and, thus, significantly

improve recall. Moreover, these additional data result in improved precision as well,

which indicates the presence of inherited attributes (see Section 6.1.4). Around two

examples per class on average is inadequate amount of training data for such a complex

task as functional annotation of genes. Bringing into play examples from lower levels

of a hierarchy allows the hierarchical algorithms to explore and take advantage of much

relevant vocabulary and, hence, improve precision. The third dataset, MEDLINE C,

has a much smaller class hierarchy and more training data per class. It also appears

to be easier to learn as the variety of the vocabulary related to cellular localization is

much smaller than that of a biological process or a molecular function. As a result,

all algorithms, including “flat” show notably better performance on this dataset. Yet

again, both hierarchical approaches surpass the “flat” method in recall; though, the

“flat” algorithm is superior in precision, which suggests the smaller degree of attribute

inheritance.

The two hierarchical approaches exhibit comparable performance on the MEDLINE

data. The global technique is inferior to local only on one dataset, MEDLINE F. This

dataset is characterized by very large out-degree (10.29) that considerably increases the

complexity of the classification task for the global algorithm comparing to the local one.

As we saw in the experiments on synthetic data in Chapter 6, greater values of out-

degree result in a significant number of additional categories (∼ kd−1) for the global

method and only a slight (linear) increase in complexity for the local algorithm. Dealing

with a thousand categories and vast out-degree, the global algorithm acts cautiously,

assigning less labels to test instances and trying to maintain high precision at the cost

of lower recall. This becomes apparent on the highly “bushy” MEDLINE F data, where

the global algorithm yields to local by ∼5%.

Overall, the Cellular Component ontology looks the easiest among the three ontologies

Hierarchical text categorization in bioinformatics 137

in the MEDLINE datasets. This, to a great extent, may be due to the largest amount of

data available to learning algorithms for training. On average, the MEDLINE C dataset

has about 5 training instances per class while the other two collections have only 1-2

examples. For that reason, the first direction for improvement of the proposed system we

see in expanding the training data. Yet, this can be tricky. In general, only a few articles

per gene get annotated with functional information in most genomic databases. One

possible solution may be to combine the functional annotations available in databases

from several organisms, such as yeast, fly, mouse, human, etc. Though, it might still be

not enough. The functional annotation from literature appears to be a demanding task,

so that learning an effective automatic classification system could require a substantial

amount of labeled data. In the future, when thousands of new genes get annotated, this

problem can be resolved. As for now, this kind of annotation systems can be used in

semi-automatic settings by suggesting the functional labels to human annotators and

leaving the final decision to trained professionals.

As the next step in this research we plan to apply the proposed approach to novel or

poorly characterized genes whose functions have not been included in databases yet. For

each such gene we can search the Medline database to retrieve the documents related

to the gene and classify those documents into the Gene Ontology codes. The assigned

annotations then can be evaluated by an expert who will go through the Medline articles

associated with the genes to verify if they contain any evidence for the given annotations.

Besides yeast, the same process may be applied to other organisms, fly (Drosophila

melanogaster), worm (Caenorhabditis elegans), mouse (Mus musculus), human, whose

genomes have also been partially annotated with Gene Ontology functions.

Finally, the feature sets used in the learning process could be enriched with available

background knowledge. For example, Medical Subject Headings (MeSH) and Enzyme

Commission numbers, which are manually assigned to a large part of the Medline ab-

stracts, can be incorporated as additional features in the conventional “bag-of-words”

feature sets. Besides, the same extensions discussed for the MeSH indexing task can be

applied here as well.

Hierarchical text categorization in bioinformatics 138

preprocessing
 clustering

Identification

of interesting

genes

validation

of results

Microarray

data

MedLine

database

gene

functions

Gene

Ontology

Figure 7.5: Gene expression analysis. Genes are put into a microarray to measure their
expression levels. After that, the microarray data are preprocessed and clustered. Several
the most interesting groups of genes are identified for follow-up studies. The goal of
our task (in the dashed box) is to enhance the clustering process with gene function
information to produce more biologically meaningful clusters.

7.3 Gene expression analysis in the presence of back-

ground knowledge

One of the major genomics problems that require the functional information on genes/

gene products is gene expression analysis. As mentioned in Section 3.5.6, the microarray

technology has revolutionized the field of genomics. Hundreds of microarray studies are

conducted on a daily basis. Consequently, a large amount of data need to be analyzed.

Clustering techniques are typically the first step in this analysis, and often they are

complemented with a manual analysis to identify the functionally coherent groups of

genes with interesting expression profiles. Hence, the functional information on genes is

essential at this stage. In this work, we would like to go one step further and replace some

of the manual effort with automatic techniques that discover functionally and expression-

wise related genes directly during the clustering process (see Figure 7.5). This would

allow us to obtain clusters that are more meaningful and more practical for biologists

and bioinformaticists than the ones produced by conventional clustering techniques.

The idea of combining gene expression data with background functional information

has been investigated by several researchers [Hanisch et al., 2002,Raychaudhuri et al.,

2003, Glenisson et al., 2003, Liu et al., 2004, Speer et al., 2004b]. Their studies show

that the incorporation of background knowledge into the clustering process indeed re-

Hierarchical text categorization in bioinformatics 139

sults in functionally coherent clusters that are more appealing to biologists. However, in

these studies cluster evaluation is mostly done by visual inspection and, hence, is very

subjective. In this work, we introduce a practical, fully automatic, unbiased technique

to evaluate the quality of functionally enriched clusters. We experiment with our novel

hierarchical measure as a candidate for the distance measure between Gene Ontology

annotations. Unlike previous work, we also introduce a technique to calculate cluster

means, a required step in several clustering algorithms, such as K-means. Our exper-

iments confirm that clustering enhanced with background knowledge results in more

biologically meaningful and more valuable groupings of genes.

A natural way of incorporating the functional information into the clustering process

is to modify the gene distance function. Normally, the distance function (e.g. Euclidean

distance, Pearson correlation, etc.) only reflects the similarity of genes based on their

expression profiles. To account for functional similarity, we can combine the conven-

tional distance between the expression vectors with the measure of relation between the

functional annotations of the genes:

D(x, y) = (1− α) · d1(x, y) + α · d2(Cx, Cy),

where d1(x, y) is any conventional distance measure defined on the space of expression

vectors, d2(Cx, Cy) is a distance measure between the functional categories of genes x

and y in a Gene Ontology graph, and α is a coefficient representing the relative weight

of the functional distance in the combined distance measure. In the present work, we

adapt this approach and modify the well-known K-means clustering algorithm to take in

the combined distance measure.

7.3.1 K-means clustering algorithm

As the core clustering algorithm we have chosen K-means [Hartigan, 1975]. It is a

simple centroid algorithm that has been in use for decades in many applications including

gene expression analysis. Despite its simplicity and some drawbacks, the algorithm

typically demonstrates excellent performance and, therefore, has been a popular choice

in microarray research. In fact, it has been shown to be among the top performing

algorithms in gene expression analysis [Gibbons and Roth, 2002]. For that reason, we

decided to employ this algorithm in our experiments.

The algorithm aims to partition a set of data points into k disjoint clusters so as to

minimize the sum of intra-cluster distances, i.e. the distances between each point and its

Hierarchical text categorization in bioinformatics 140

cluster mean:

total d =
k∑

j=1

∑

x∈Sj

D(x, µj),

where Sj, j = 1, . . . , k are k non-overlapping clusters, µj =

∑
x∈Sj

x

|Sj | are the cluster means

(aka centroids), and D(x, µj) is the distance between a point and a cluster mean, e.g.

Euclidean distance.

The algorithm requires a user-defined parameter k that specifies the number of clus-

ters to look for. It starts with (randomly) chosen k points to be the initial cluster

centroids. Then, each point is assigned to the cluster with the nearest centroid, and the

centroids are re-calculated. After that, the partitions are optimized iteratively by check-

ing for every point whether it should be moved to another cluster in order to minimize

the overall intra-cluster distance total d. If a point is moved, the centroids of both clus-

ters, new and old, are re-calculated. This process is repeated until no points are moved

from their clusters. The pseudo-code for the algorithm is presented in Figure 7.6.

The K-means algorithm has two major drawbacks. The first one is the need to a

priori choose the optimal number of clusters k. Sometimes, researchers have an idea of

how many natural clusters present in their data, but most of the time, they can only

guess. Hence, the optimal number is determined experimentally by trying several possible

values for k. The second drawback is the non-deterministic nature of the algorithm. The

optimization procedure of the K-means algorithm (provably) converges, but only to a

local minimum. Thus, the final partition heavily depends on initially selected centroids.

Consequently, if the initial centroids are picked randomly, different runs of the algorithm

on the same data would lead to different results. Two alternative solutions can be

thought of here: one can either try to find good starting points or run the algorithm

with randomly chosen initial centroids several times picking the run that resulted in the

smallest intra-cluster distance total d. For our experiments, we follow the latter strategy

and execute the clustering algorithm 10 times for each configuration reporting the run

with the smallest total d.

7.3.2 K-means enriched with functional information

In this section, we present the modified version of the K-means clustering algorithm that

groups genes not only by their expression profiles, but also by their functionality in a

cell. For this, we can directly employ our hierarchical evaluation measure as a distance

measure between the functional annotations of a pair of genes and add this distance to

Hierarchical text categorization in bioinformatics 141

Given: x ∈ S - a set of data points
k - the number of clusters

randomly choose k points xij ∈ S as centroids µj , j = 1, . . . , k

for each x ∈ S do:
x ∈ Si : i = argminj D(x, µj)

for j = 1 to k do:

µj =

∑
x∈Sj

x

|Sj |

convergence = false

repeat until convergence:
convergence = true
for each x ∈ Si, i = 1, . . . , k do:

i′ = argminj D(x, µj)
if (i 6= i′) then

convergence = false
x ∈ Si′

µi =
∑

y∈Si
y

|Si|

µi′ =

∑
y∈S

i′
y

|Si′ |

return Sj , j = 1, . . . , k

Figure 7.6: K-means clustering algorithm.

a conventional distance (e.g. Euclidean) between the gene expression vectors:

D(x, y) = (1− α) ·DE(x, y) + α ·DGO(Cx, Cy).

Then, we can calculate the distance between a gene and a cluster as the average distance

between the given gene and all the genes in the cluster. However, this would require

significant computational resources as at each iteration we have to consider distances

between every pair of genes6. Therefore, we decided to stick with the K-means routine

and propose a method of computing cluster centroids and distances between a gene and

a centroid in the functional space of the Gene Ontology.

Cluster means are computed separately for expression data and functional anno-

tations. For numeric data (expression values) we use the conventional formula for a

6Although the distances between every pair of genes can be precomputed, the calculation of the
distance between a gene and a cluster would still be time-consuming as it would involve the averaging
of several hundreds of numbers.

Hierarchical text categorization in bioinformatics 142

geometric centroid:

µE
j =

∑
x∈Sj

x

|Sj| .

For nominal data (GO annotations) we apply the following strategy. First, to account

for hierarchical relations among functional annotations, we extend a set of functional

categories Cx for each gene x ∈ S with all their ancestor categories in the Gene Ontology

Ĉx = {⋃ck∈Cx
Ancestors(ck)}. Then, the functional part of a cluster centroid µGO

j is

obtained as a set of all functional categories ci ∈ Ĉx of all genes x in the cluster Sj:

µGO
j = {⋃x∈Sj

Ĉx}. For each category ci ∈ µGO
j we also maintain a numerical weight

wGO
j (ci) that corresponds to the number of genes in the cluster Sj having this function:

wGO
j (ci) = |Sj(ci)|, where Sj(ci) = {x : x ∈ Sj ∧ ci ∈ Ĉx}. When a new gene x is added

to a cluster, the cluster mean is updated by including the functional categories of gene x

(and all their ancestor categories) that are not yet present in the cluster and increasing

the weights of the gene’s categories that have already been in the cluster. Similarly, a

cluster mean is updated if a gene is removed from the cluster by decreasing the weights

of the gene’s functional categories.

The distance between a gene and a cluster mean also consists of two parts: a conven-

tional distance between expression values and a functional distance between annotations

in the Gene Ontology space:

D(x, µj) = (1− α) ·DE(x, µE
j) + α ·DGO(Cx, µ

GO
j).

As a conventional distance between two expression vectors, we use Euclidean distance:

DE(x, µE
j) =

√∑

i

(xi − µE
ji)

2.

The distance is normalized to be in the same range as the GO distance [0..1]. As a

functional distance DGO(Cx, µ
GO
j) we adapt our hierarchical measure. We calculate hi-

erarchical precision and hierarchical recall of how well the cluster mean µGO
j represents

gene x’s functionality. In other words, we interpret gene x’s functional categories as true

labels while the categories from the cluster mean µGO
j form the predicted label set (with

weights). Then, precision is calculated as the total weight of gene’s functions (and all

their ancestor categories) present in the cluster centroid divided by the total weight of

Hierarchical text categorization in bioinformatics 143

all categories in the cluster:

hPj(x) =

∑
ci∈Ĉx

wGO
j (ci)∑

ck∈µGO
j

wGO
j (ck)

.

Positive weights of wGO
j (ci) represent the fact that the corresponding functions ci ∈ Ĉx

are present in the cluster. The gene’s functions not found in the cluster would have zero

weights: wGO
j (ci) = 0, if ci ∈ Ĉx and ci /∈ µGO

j .

Recall is calculated as the percentage of gene’s functions (and all their ancestor cat-

egories) present in the cluster mean:

hRj(x) =
|Ĉx ∩ µGO

j |
|Ĉx|

.

Combining the two values, precision and recall, in hF1 value and subtracting it from 1

we get the functional distance DGO(Cx, µ
GO
j):

DGO(Cx, µ
GO
j) = 1− 2 · hPj(x) · hRj(x)

hPj(x) + hRj(x)
.

7.3.3 Evaluation

Evaluation of clustering algorithms is not a trivial task as there is no notion of clustering

accuracy. Generally, the ideal partitioning of data (or gold standard) is not known in

advance. So, we can only compare the results obtained by different clustering techniques.

A visual inspection is often performed for this task. Yet, even if it is done by an expert,

such evaluation is very subjective. An objective evaluation has been the focus of several

studies, and some criteria have been proposed, for example cluster compactness [Davies

and Bouldin, 1979,Rousseeuw, 1987] and cluster stability [Famili et al., 2004]. Although

these are good criteria for clustering just expression data, they are less useful when

functionally oriented clusters are the target. A cluster quality measure that takes into

account both the cluster compactness and functional coherence is needed for such tasks.

However, it is not enough. An ideal measure is the one that can estimate how useful the

clusters are for a biological study.

In this work, we propose one such measure that is based on the ability of the clusters

to predict the functional categories of genes with missing annotations. Since one of the

main purposes of clustering is to predict the functions of novel genes, such evaluation

Hierarchical text categorization in bioinformatics 144

would demonstrate the usefulness of the obtained clusters.

We evaluate cluster prediction performance in a 10-fold cross-validation fashion. A

given set of genes, participating in a microarray study, is split into 10 subsets of approx-

imately equal sizes. Then, each subset in turn is used as a test set in the prediction

task. The other 9 subsets form a training set that is clustered with the modified K-

means algorithm. The obtained clusters are used to predict the functional categories of

the genes from the test subset. For this, the genes from the test subset are assigned to

clusters based on their expression profiles. Then, the degree of correspondence between

the genes’ annotations and their clusters’ annotations is established with our hierarchical

evaluation measure introduced in Chapter 5.

In the described evaluation procedure, two points remain to be defined: how to de-

termine the cluster membership for a non-annotated gene and which categories should

be assigned to a gene from a cluster. Clearly, a gene should be assigned to the cluster

which it resembles the most or, in other words, the nearest cluster. However, the mod-

ified distance measure is ineffective for this task because of the lack of the functional

information on a tested gene. Euclidean distance is also inadequate since functionally

enriched clusters can overlap in the Euclidean space. The solution we adopt is based on

the n-nearest neighbor principle: n nearest points in the Euclidean space are identified

and the cluster of the majority of these points is assigned to the tested gene. In this

way, we select a cluster with a strong representation in the area of interest, i.e. where

the tested point lies.

After a cluster is chosen, the tested gene will be annotated with the cluster’s func-

tional representation. Large clusters, however, can hold genes with a number of different

functions so that assigning all the cluster’s functional categories would result in very low

precision. For that reason, we apply a pruning procedure to the category assignment

process: we assign only those categories that are represented by at least half of the genes

in the cluster. The 50% threshold is chosen as a reasonable trade-off between precision

and recall.

Finally, we want to emphasize that gene function prediction is not the primary goal

of these experiments and is used only as an evaluation tool.

7.3.4 Datasets

We experiment with a well-known dataset of gene expression in budding yeast (Saccha-

romyces cerevisiae) [Eisen et al., 1998]. This dataset contains the expressions of 2467

Hierarchical text categorization in bioinformatics 145

annotated genes from several experimental conditions, namely the diauxic shift, the mi-

totic cell division cycle, sporulation, and temperature and reducing shocks. There is a

total of 79 individual array experiments. In the original paper [Eisen et al., 1998], the

data were hierarchically structured with a pairwise average-linkage clustering technique.

The genes’ relationships were determined purely based on the similarity of their expres-

sion profiles. Then, 10 best clusters were identified manually that represent functionally

coherent groups of genes. We collected the genes from these 10 clusters to form a smaller

dataset to experiment with. We call this dataset 10-cluster subset of the original data. It

consists of 262 genes and all 79 conditions. This dataset is an excellent starting point for

our experiments because of its small size, the known number of clusters to look for, and

low noise. We use this dataset to study the behavior of the proposed clustering approach

with different parameter settings, such as the value of alpha, the number of neighbors in

cluster identification for a test point, and the aspect of the Gene Ontology in functional

annotations. Then, we run the experiments on the full data to confirm the results.

7.3.5 Results

We run the extended K-means clustering algorithm on the 10-cluster subset of the original

yeast expression data separately for each aspect of the Gene Ontology, biological process,

molecular function, and cellular component. As the dataset is small, only one nearest

neighbor is used to determine the cluster membership for genes in a test set7. For each

aspect, 10 runs of the 10-fold cross-validation experiments are performed. The results

are presented in Figure 7.7. The figure shows the prediction performance of the obtained

clusters for different values of the alpha coefficient. The alpha coefficient represents

the weight of the GO distance in the combined distance measure. Alpha equal to 0

corresponds to the original K-means with Euclidean distance and is shown separately

as a baseline. Another baseline, at the top, shows the prediction performance of the 10

manually chosen clusters in the original study by Eisen et al. [Eisen et al., 1998]. The

prediction performance of the manually chosen clusters is assessed in the same way as it

is done for automatically derived clusters (Section 7.3.3).

The experiments demonstrate an improved quality of functionally enriched clusters

in terms of their prediction capabilities over the conventional Euclidean clusters on all

three hierarchies. The most notable improvement is on the molecular function ontology

where the differences are statistically significant with 99% confidence for almost all val-

7Larger numbers of neighbors have been tried, but did not result in better prediction performance.

Hierarchical text categorization in bioinformatics 146

 76

 77

 78

 79

 80

 81

 82

 0 0.2 0.4 0.6 0.8 1

pr
ed

ic
tio

n
hF

alpha coefficient

biological process

expression + GO
expression

manual clusters

 48

 50

 52

 54

 56

 58

 60

 62

 0 0.2 0.4 0.6 0.8 1

pr
ed

ic
tio

n
hF

alpha coefficient

molecular function

expression + GO
expression

manual clusters

 81.5

 82

 82.5

 83

 83.5

 84

 84.5

 85

 85.5

 86

 0 0.2 0.4 0.6 0.8 1

pr
ed

ic
tio

n
hF

alpha coefficient

cellular component

expression + GO
expression

manual clusters

Figure 7.7: Regular and functionally enhanced K-means clustering on the 10-cluster
subset of the yeast expression data [Eisen et al., 1998]. Clustering results are evaluated
on the function prediction task in a 10-fold cross-validation fashion.

ues of alpha. The maximal gain of 5% is obtained for α = 0.2. Then, the extent of the

improvement slowly decreases, yet staying positive on all range of alphas. On the biolog-

ical process hierarchy the differences for most alpha values are positive (with statistical

significance for alphas 0.2 - 0.4). The highest gain is obtained for α = 0.25. The smaller

gain is reached on the cellular component ontology where better prediction is demon-

strated only for alpha less than 0.5 (with statistical significance for alphas 0.15 - 0.25).

An interesting observation is that on all three ontologies the best results are achieved

for approximately the same value of alpha, 0.2 - 0.25. For larger values, the performance

starts to slightly deteriorate. Looking at precision-recall breakdown, we can see that

the extended clustering algorithm shows considerably improved recall with some loss in

precision, which is explained by an improved functional coherence of clusters. In the

original K-means algorithm, the clusters are functionally quite diverse so that only the

top, highly used functional categories are shared among the large number of genes in each

Hierarchical text categorization in bioinformatics 147

 40

 40.5

 41

 41.5

 42

 42.5

 0 0.2 0.4 0.6 0.8 1

pr
ed

ic
tio

n
hF

alpha coefficient

biological process

expression + GO
expression

 8

 10

 12

 14

 16

 18

 0 0.2 0.4 0.6 0.8 1

pr
ed

ic
tio

n
hF

alpha coefficient

molecular function

expression + GO
expression

 65

 65.2

 65.4

 65.6

 65.8

 66

 66.2

 66.4

 66.6

 66.8

 0 0.2 0.4 0.6 0.8 1

pr
ed

ic
tio

n
hF

alpha coefficient

cellular component

expression + GO
expression

Figure 7.8: Regular and functionally enhanced K-means clustering on the full yeast
expression data [Eisen et al., 1998]. Clustering results are evaluated on the function
prediction task in a 10-fold cross-validation fashion.

cluster. Therefore, the use of the standard K-means for this task results in highly precise,

but hardly useful automatic annotation. The enhanced version of K-means groups genes

with shared functionality resulting in more functionally compact clusters where many

functional categories are shared among the large number of genes. Thus, more categories

are assigned to test genes, which corresponds to significantly higher recall values.

We repeat the experiments on the full version of the dataset. Since the optimal

number of clusters for these data is not known a priori, we have tried several values from

5 to 25. Figure 7.8 shows the performance of the extended K-means clustering algorithm

with k = 10. On these large datasets, the number of nearest neighbors for determining

the cluster membership for genes in a test set is increased to 15. The results appear to

be better than the ones obtained on the 10-cluster subset with the extended algorithm

significantly outperforming the conventional K-means for all values of alpha on all three

ontologies. Again, the most noticeable improvement (∼ 8%) is achieved on the molecular

Hierarchical text categorization in bioinformatics 148

function ontology. On the biological process hierarchy a gain in ∼ 2% is obtained, while

on the cellular component ontology the gain is the smallest (∼ 1.5%). Unlike the small

dataset, on the full data the peak of the performance is reached for larger values of alpha:

α ≈ 0.5.

Overall, the experiments demonstrate that functional information does indeed enrich

the clustering process producing more functionally coherent and, therefore, more bio-

logically meaningful clusters. The contribution of the functional information into the

distance function should to be set at about 50% to give enough weight to the functional

information while still preserving the cluster compactness in the Euclidean (expression)

space at least to a some degree. The cluster prediction ability improves considerably for

the molecular function aspect of gene functionality while the cellular component aspect

seems to benefit the least. This is expected since a protein’s location does not directly

correspond to the protein’s function, so proteins located in the same part of a cell are

not necessarily there for the same reason and, therefore, can have different expression

profiles.

An interesting next step will be to combine the functional information from all three

aspects of the Gene Ontology: biological process, molecular function, and cellular compo-

nent. For this, we would calculate the functional distances between a gene and a cluster

in each Gene Ontology graph separately and then aggregate those distances into one

value. For example, we can take the maximum of the three values. In this way, we would

cluster genes that have similar expression profiles and share a biological function, which

can be explained by different factors: the genes can be involved in the same pathway,

may be located in the same cellular component, etc.

In addition, several aspects of the presented approach, including the cluster mean cal-

culation, the GO distance, and the prediction mechanism, can be improved in the future.

Also more experiments will be conducted to see if the conclusions hold on other data

and for other clustering techniques and distance measures. In particular, the proposed

techniques will be applied to datasets containing poorly characterized genes to evaluate

the effectiveness of the approach in the real-world settings.

7.4 Summary

This chapter presents three applications of the hierarchical text categorization techniques

to the area of bioinformatics. The three practical problems that we address include ar-

ticle indexing with Medical Subject Headings (MeSH), functional annotation of genes

Hierarchical text categorization in bioinformatics 149

from biomedical literature, and gene expression analysis in the presence of background

knowledge. Our experiments demonstrate that the proposed hierarchical learning and

evaluation techniques can be successfully applied to these tasks showing superior re-

sults over the conventional “flat” techniques. In our third application, gene expression

analysis in the presence of background knowledge, we present a novel technique of co-

clustering gene expression (experimental) data with gene functional information (back-

ground knowledge), which results in biologically meaningful, practical clusters of genes.

Furthermore, we introduce an innovative cluster quality evaluation procedure that as-

sesses not only how good the clusters are, but also how useful they are for a particular

task of predicting functionality of poorly characterized genes.

Chapter 8

Conclusions and future work

This work addresses the task of hierarchical text categorization. In this task we are given

a set of predefined categories that are organized in a hierarchical structure. The goal of

hierarchical text categorization is to efficiently and effectively incorporate the additional

information on category structure into the learning process.

The research presented in this thesis focuses on two aspects of hierarchical catego-

rization: learning and performance evaluation. We argue that hierarchical classification

should be consistent with a given class hierarchy to fully reproduce the semantics of hier-

archical relations. Consequently, consistent classification results in more meaningful and

easily interpretable output for end-users. Then, we present two learning algorithms that

carry out consistent classification. The first one is a local top-down approach that has

been extended to the general case of DAG hierarchies with internal class assignments.

The second algorithm is a novel hierarchical global approach. In addition, we perform

an extensive set of experiments on real and synthetic data to demonstrate that the two

hierarchical techniques significantly outperform the corresponding “flat” approach, i.e.

the approach that does not take into account any hierarchical information.

The second main contribution of this research is the new hierarchical performance

evaluation measure. After discussing performance measures for hierarchical classification

and introducing natural, desired properties that these measures ought to satisfy, we de-

fine a novel hierarchical evaluation measure, and show that, unlike the conventional “flat”

as well as the existing hierarchical measures, the new measure satisfies all the desired

properties. It is also simple, requires no parameter tuning, and has much discriminating

power. Moreover, it is superior to standard “flat” measures in terms of statistical con-

sistency and discriminancy, the two concepts introduced by Huang and Ling [Huang and

150

Conclusions 151

Ling, 2005] to systematically compare classifier performance measures.

Also, our work illustrates the benefits of the proposed hierarchical text categorization

techniques over conventional “flat” classification on real-world applications from bioin-

formatics. Bioinformatics is a vital, quickly developing scientific discipline that has many

text-related problems. A wealth of biomedical literature accumulated through decades

presents a valuable source of essential knowledge required by biomedical scientists and

practitioners in their everyday activities. While manual search through such a vast collec-

tion of free texts is tedious and time consuming, automatic text categorization methods

offer users the means of fast and reliable search and retrieval of the requisite information.

In this work, we address three bioinformatics problems. The objective of the first

task, indexing biomedical articles with Medical Subject Headings (MeSH), is to associate

documents with biomedical concepts they discuss from the specialized vocabulary of

MeSH. Having articles indexed with MeSH terms considerably improves the performance

of search engines, such as Pubmed. In our second application, we tackle a challenging

problem of gene functional annotation from biomedical literature. We view this task as

a text categorization problem of classifying the articles describing a gene of interest into

functional categories of the Gene Ontology. Our experiments demonstrate the advantage

of hierarchical text categorization techniques over the “flat” method on this task. In

the third application, our goal is to enrich the analysis of plain experimental data with

biological knowledge. In particular, we incorporate the functional information on genes,

available from the specialized genomic databases or from literature, directly into the

clustering process of microarray data. This results in improved biological relevance and

value of clustering results.

In future work, we plan to extend the proposed global hierarchical learning method

to other base learning algorithms. Unlike AdaBoost.MH, some multi-label classification

methods may be found behaving consistently in the hierarchical framework even without

the post-processing step. Also, we would like to investigate the relationship between the

performance of a hierarchical classifier and the number of training examples required to

attain that level of performance. In machine learning research, this is a well-known issue

that can be addressed in a theoretical framework (e.g. PAC-learning) or in an experimen-

tal setting. Since the hierarchical problem and the learning process considerably differ

from the standard “flat” case, this question needs to be examined in the context of the

hierarchical learning task.

For the bioinformatics applications, MeSH indexing and gene functional annotation,

our primary goal is obtaining more training data. As well-known both theoretically and

Conclusions 152

practically, extra training data often result in a better classification performance. The

addressed applications deal with hundreds of classes and tremendously diverse biomedical

vocabulary; therefore, they require a substantial amount of labeled data to learn reliable

classification models and to achieve results that can be practical in real-life settings.

In addition, biology oriented text problems can benefit from more sophisticated feature

selection and construction approaches. Besides conventional “bag of words” features,

we can include additional information on gene aliases, MeSH terms, and/or Enzyme

Commission numbers associated with the documents. Moreover, special representation

of biologically relevant named entities, e.g. gene names, chemical names, etc., can have

a positive effect on classification performance.

In our third application, gene expression analysis with functional information, we

would like to continue experiments and explore other possible distance measures (e.g.

Pearson correlation) and clustering algorithms (e.g. SOM, hierarchical algorithms). In

addition, several aspects of the presented approach, e.g. centroid calculation and the

prediction mechanism, can be further refined.

Finally, we will investigate other bioinformatics problems where background textual

information can enrich the traditional practices. In particular, biomedical literature

can be brought into play at various stages of a biological study: from planning and

refining biological experiments to the analysis of the obtained results and validation of

the derived conclusions. Text mining techniques, including the presented hierarchical

text categorization methods, would be the central means in pursuing these goals.

Appendix A

In this section we present details on other hierarchical approaches explored in this re-

search (see Section 4.3), namely hierarchical decision trees, ECOC, and cost-sensitive

learning.

Hierarchical decision trees

To include hierarchical information into the decision tree induction method C4.51, we

modified the entropy/gain ratio splitting criteria in a number of ways. The general idea

was to force the induction algorithm to focus first on high level categories and only

later on low level categories in some way simulating top-down level by level hierarchical

classification (the local hierarchical approach). We did this by giving more weight to

closely located categories in a hierarchy (sibling categories) and less weight to distant

categories. Below are listed the ways we approached these objectives and results we got.

1. Hierarchical precision (Chapter 5) as a splitting criterion23. Since we mea-

sure the performance of a classification system with our new hierarchical measure,

it is a natural choice to try to optimize this measure while building a decision

tree. However, as in the regular decision tree induction process optimization of

the classification error does not work pretty well, in the hierarchical decision tree

1In these experiments we used C4.5 software as well as Weka’s implementation of the decision tree
learning algorithm.

2For single-label classification with examples belonging only to leaf classes, the values of precision (P),
recall (R), and F1-measure are equal. Therefore, we report only standard precision (P) and hierarchical
precision (hP).

3For experiments in this section we used a small version of the “20 newsgroups” dataset. It consists of
15 leaf and 5 intermediate categories; examples are assigned only to the leaf categories with 50 examples
per category. In addition, we used a single-label version of the “Reuters-21578” dataset. We selected
examples that belong only to one class. Overall, this dataset had 66 leaf categories and 6 intermediate
categories. Each experiment on these datasets was repeated 10 times in a cross-validation fashion.

153

Appendix A 154

induction optimization of the hierarchical error did not lead to a significant im-

provement. The resulting decision trees were in general much larger causing a very

small training error rate but about the same test error rate.

C4.5 modified C4.5
Dataset P hP P hP

20 newsgroups (small) 50.00 62.60 50.40 62.20
20 newsgroups 65.14 74.40 65.60 75.20

2. Hierarchical precision as a splitting criterion + feature selection. Prelimi-

nary experiments with synthetic data indicated that the presence of useless features

can significantly hurt the performance of the algorithm. Therefore, we combined

the algorithm with one of the standard feature selection methods that chooses the

top n features according to their info gain, gain ratio, or Chi-square statistics (see

Table 3.1). Selecting a small number of the most informative features boosted the

performance of the hierarchical algorithm.

C4.5 modified C4.5
Dataset FS method # of features P hP P hP

20 newsgroups (small) info gain 50 45.20 58.67 45.73 59.73
100 48.80 61.27 51.33 64.20
500 50.53 62.53 51.87 64.13
1000 50.00 61.67 51.47 63.00

gain ratio 100 40.40 52.40 41.20 53.33
500 55.87 66.00 54.13 64.73

Chi-square 100 52.53 63.80 53.60 65.67
500 52.93 64.93 54.67 66.67

3. A linear combination of standard gain ratio and hierarchical precision

as a splitting criterion.

α ·GainRatio + (1− α) · hP

We decided to combine the hierarchical precision splitting criterion with the con-

ventional gain ratio splitting criterion to be able to control the size of a decision

Appendix A 155

tree. Gain ratio is known to be a good choice to select a small decision tree that

satisfies training data. Combining it with our hierarchical criterion led to a slight

improvement in the performance.

modified C4.5
Dataset α P hP

20 newsgroups 0.0 (C4.5 with hP) 65.60 75.20
0.1 65.80 75.21
0.2 65.22 74.88
0.3 65.36 75.27
0.4 65.61 75.54
0.5 65.91 75.48
0.6 65.65 75.27
0.7 65.01 74.63
0.8 64.62 74.25
0.9 64.70 74.25
1.0 (original C4.5) 65.14 74.40

reuters (single-label) 0.2 83.80 87.00
0.3 82.24 85.81
0.4 82.64 86.23
0.5 82.65 86.35
0.6 82.15 85.87
0.7 82.48 86.14
0.8 82.23 86.03
0.9 82.83 86.55
1.0 (original C4.5) 83.05 86.50

4. Hierarchical precision as a class probability in the gain ratio splitting cri-

terion. The class probability is the proportion of the examples that belong to the

class out of all examples that reach the current decision node. It also corresponds

to the accuracy of the node if we classify all examples into that class. We replace

the standard accuracy measure with a hierarchical one changing accordingly the

entropy formula:

Entropy = −∑

i

hP (ci)log hP (ci),

where hP (ci) computes the hierarchical precision of the decision node where all

examples are classified in ci.

Appendix A 156

C4.5 modified C4.5
Dataset P hP P hP

20 newsgroups 67.31 76.67 63.77 75.03
reuters (single-label) 84.32 87.75 81.10 85.41

5. Modifying the entropy measure to give more weight to siblings

Entropy = −α· ∑

siblings of majority class

P (ci)logP (ci)−(1−α)· ∑

other categories

P (cj)logP (cj)

C4.5 modified C4.5
Dataset P hP α P hP

20 newsgroups (small) 50.00 62.6 0.9 48.27 62.47
0.75 44.13 58.73

6. Shrinkage (partly counting examples from sibling categories)

P (ci) =
|ci|+α·

∑
siblings of ci

|cj |
n+n·α·(#classes−1)

; Entropy = −∑
i P (ci)logP (ci)

C4.5 modified C4.5
Dataset P hP α P hP

20 newsgroups (small) 50.00 62.6 0.1 44.00 58.33
0.5 37.47 52.47

7. Modifying the entropy measure to incorporate the parents’ entropy

Entropy = −α · ∑

children categories

P (ci)logP (ci)− (1−α) · ∑

parent categories

P (cj)logP (cj)

Appendix A 157

modified C4.5
Dataset α P hP

20 newsgroups (small) 0.1 39.87 54.27
0.5 46.67 59.27
0.6 47.47 60.13
0.75 48.93 60.60
0.8 47.47 59.87
0.9 48.27 60.27
1.0 (original C4.5) 50.00 62.60

8. Gain ratio as a splitting criterion + pruning to optimize the hierarchical

measure. Generally, the decision tree induction algorithm consists of two parts.

First, a decision tree is grown until leaf nodes contain just a few examples or no

more splits can be produced. Then, the decision tree is pruned to reduce its size

but keep the training accuracy. Smaller trees are less prone to overfitting leading

to better performance on test instances. We keep the growing part of the algorithm

the same, but change the pruning part modifying the pruning criterion. Instead

of optimizing the standard accuracy we optimize the hierarchical accuracy while

pruning the tree.

C4.5 modified C4.5
Dataset P hP P hP

20 newsgroups 67.31 76.67 62.19 73.40
reuters (single-label) 84.32 87.75 84.88 88.19

9. Gini index with misclassification costs derived from the class hierarchy

as a splitting criterion. Gini index is an alternative splitting criterion used in

another successful decision tree building system CART [Breiman et al., 1984]. It

is based on the notion of node impurity:

i(t) =
∑

i 6=j

cost(ci|cj)P (ci|t)P (cj|t).

Appendix A 158

At each step a node t is splitted into two nodes, left tL and right tR, and the best

split is the one that maximizes the reduction in impurity:

∆(s, t) = i(t)− pL · i(tL)− pR · i(tR),

where pL (pR) is the proportion of examples that go left (right). Usually, misclas-

sification costs cost(ci|cj) are not taken into account. However, a class hierarchy

clearly introduces some non-uniform costs. We tried this cost-sensitive formula

with the following costs: cost of the correct classification cost(ci|ci) is 0, cost of

misclassification into a sibling category is 1, cost of misclassification into a distant

category varies from 1 to 4.

modified C4.5
Dataset cost P hP

20 newsgroups (small) 1 47.47 59.20
1.5 45.33 58.07
2 45.47 58.07
4 41.73 55.87

ECOC

Error-Correcting Codes (ECOC) [Dietterich and Bakiri, 1995] is a learning technique

for multi-class classification problems. It works in the following way. Each of the n

categories is mapped into a unique k-bit string (k < n) called a codeword. Then, k

classifiers are trained, one for each bit. When a new instance is classified, a category

with the codeword closest to the bit string produced by the classifiers is selected.

To adapt ECOC to the hierarchical settings, we add bits representing the hierarchi-

cal information and/or allow more/less separation between siblings than between non-

siblings categories. The first conclusion that we got was that less separation between

some of the nodes does not reduce the length of the code, so we can’t save the com-

putational cost here. The second conclusion was that the classification accuracy, both

standard and hierarchical, depends only on row and column bit separation. By adding

bits to represent the hierarchical relations between the categories, we increase the row

separation but decrease the column separation. The following are the results for the “20

newsgroups” (small) dataset and decision trees as an underlying learning method:

Appendix A 159

BCH code separation between separation between P hP
siblings non-siblings

15 bits BCH code 7 bits 7 bits 46.67 56.33

15-bit BCH code +
15-bit BCH code for parent categories 7 bits 14 bits 46.67 56.67

15-bit BCH code +
15-bit BCH code for children categories 14 bits 7 bits 42.67 53.00

31-bit BCH code 15 bits 15 bits 56.67 65.00

Nevertheless, hierarchical precision can be increased (at the cost of recall) if classifi-

cation to a child node is replaced with classification to its parent in situations where the

code for a test instance is very distant from the code of the child node, i.e. the Hamming

distance to the child category is greater than a given threshold:

threshold hP

∞ 56.33
5 58.68
4 61.31
3 66.39
2 70.39
1 69.57
0 68.52

Cost-sensitive learning

We experimented with two cost-sensitive learning approaches: C5.0 and MetaCost. The

cost matrix was derived as follows. The cost of the correct classification cost(ci, ci) = 0,

the cost of misclassification into a sibling category equals to 1, and the cost of misclassi-

fication into a distant (non-sibling) category varied from 1 to 10. All experiments were

run on the “20 newsgroups” (small) dataset in a 10-fold cross-validation fashion.

C5.0 produced the following results:

Appendix A 160

cost P hP

1 49.20 61.93
2 49.50 61.20
3 49.70 62.13
5 48.30 60.07
10 48.40 60.80

C5.0’s cost-sensitive component is designed to minimize expected misclassification

costs:

cost(ci|d) =
∑

j

P (cj|d) · cost(ci, cj).

In general, a decision tree induction algorithm does not predict class probabilities,

but only the classes themselves. However, we can easily produce class probabilities for

a given test instance as the proportion of training instances that belong to the class out

of all training instances classified into the same node as the test instance. Usually, the

leaf nodes of a decision tree contain examples of only a few categories, i.e. only a few

categories would have probabilities greater than zero for a given instance. Suppose, there

are two such categories, which is the most frequent case. Then,

cost(c1|d) = P (c1|d) · cost(c1, c1) + P (c2|d) · cost(c1, c2) = P (c2|d) · cost(c1, c2),

cost(c2|d) = P (c1|d) · cost(c2, c1) + P (c2|d) · cost(c2, c2) = P (c1|d) · cost(c2, c1).

For most classification tasks with non-uniform costs, the costs are non-symmetrical,

i.e. cost(c1, c2) 6= cost(c2, c1), and the algorithm would choose the class that minimizes

the overall cost. In the case of hierarchies, the costs are symmetrical, i.e. cost(c1, c2) =

cost(c2, c1), and the classification decision in this case will be identical to the decision

taken in the case of uniform costs. As a result, the performance of C5.0 with costs does

not differ much from its performance with uniform costs.

MetaCost algorithm also aims at minimizing expected misclassification cost. It uses

bagging to estimate the class probabilities on training examples, relabels the training

examples with the estimated optimal class that minimizes misclassification costs and

applies a base learner on the relabeled training set. We applied MetaCost with Naive

Bayes as a base learner on the “20 newsgroups” (small) dataset:

Appendix A 161

algorithm P hP

Naive Bayes 46.13 57.87
MetaCost with Naive Bayes (cost = 2) 27.07 40.00

Overall, our conclusion is that the existing cost-sensitive approaches are not very

advantageous for hierarchical categorization unless we apply some smoothing techniques

to calibrate predicted class probabilities.

Appendix B

20 newsgroups dataset

computers

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

politics

talk.politics.guns

talk.politics.mideast

talk.politics.misc

religion

alt.atheism

soc.religion.christian

talk.religion.misc

sports

rec.sport.baseball

rec.sport.hockey

vehicles

rec.autos

rec.motorcycles

162

Appendix B 163

Reuters dataset

Commodity Codes (69)

ALUM

BARLEY

CARCASS

CASTOR-OIL

CASTORSEED

CITRUSPULP

COCOA

COCONUT-OIL

COCONUT

COFFEE

COPPER

COPRA-CAKE

CORN-OIL

CORN

CORNGLUTENFEED

COTTON

COTTON-OIL

COTTONSEED

F-CATTLE

FISHMEAL

GOLD

GRAIN

GROUNDNUT

GROUNDNUT-OIL

IRON-STEEL

LEAD

LIN-MEAL

LIN-OIL

LINSEED

LIVESTOCK

L-CATTLE

HOG

Appendix B 164

LUMBER

MEAL-FEED

NICKEL

OAT

OILSEED

ORANGE

PALLADIUM

PALM-OIL

PALMKERNEL

PLATINUM

PLYWOOD

PORK-BELLY

POTATO

RAPE-MEAL

RAPE-OIL

RAPESEED

RED-BEAN

RICE

RUBBER

RYE

SILVER

SORGHUM

SOY-MEAL

SOY-OIL

SOYBEAN

STRATEGIC-METAL

SUGAR

SUN-MEAL

SUN-OIL

SUNSEED

TAPIOCA

TEA

TIN

VEG-OIL

WHEAT

Appendix B 165

WOOL

ZINC

Corporate Codes (2)

Mergers/Acquisitions (ACQ)

Earnings and Earnings Forecasts (EARN)

Currency Codes (21)

U.S. Dollar (DLR)

Australian Dollar (AUSTDLR)

Hong Kong Dollar (HK)

New Zealand Dollar (NZDLR)

Canadian Dollar (CAN)

Sterling (STG)

D-Mark (DMK)

Japanese Yen (YEN)

Swiss Franc (SFR)

Belgian Franc (BFR)

Netherlands Guilder/Florin (DFL)

Italian Lira (LIT)

Danish Krone/Crown (DKR)

Norwegian Krone/Crown (NKR)

Swedish Krona/Crown (SKR)

Brazilian Cruzado (CRUZADO)

Saudi Arabian Riyal (SAUDRIYAL)

South African Rand (RAND)

Indonesian Rupiah (RUPIAH)

Malaysian Ringitt (RINGGIT)

Spanish Peseta (PESETA)

Economic Indicator Codes (16)

Balance of Payments (BOP)

Trade (TRADE)

Consumer Price Index (CPI)

Wholesale Price Index (WPI)

Unemployment (JOBS)

Industrial Production Index (IPI)

Appendix B 166

Capacity Utilization (CPU)

Gross National/Domestic Product (GNP)

Money Supply (MONEY-SUPPLY)

Reserves (RESERVES)

Leading Economic Indicators (LEI)

Housing Starts (HOUSING)

Personal Income (INCOME)

Inventories (INVENTORIES)

Installment Debt/Consumer Credit (INSTAL-DEBT)

Retail Sales (RETAIL)

Energy Codes (9)

Crude Oil (CRUDE)

Heating Oil/Gas Oil (HEAT)

Fuel Oil (FUEL)

Gasoline (GAS)

Natural Gas (NAT-GAS)

Petro-Chemicals (PET-CHEM)

Propane (PROPANE)

Jet and Kerosene (JET)

Naphtha (NAPHTHA)

Others (3)

Money/Foreign Exchange (MONEY-FX)

Shipping (SHIP)

Interest Rates (INTEREST)

Glossary

This appendix provides a glossary of terminology introduced and/or used in this disser-

tation.

Ancestor set For a category p ∈ C and a class hierarchy H = 〈C,≤〉, Ancestors(p) =

{q ∈ C : q ≥ p}. (sect. 1.2.1)

Average out-degree of a directed graph The average of the out-degree of all ver-

tices in the graph. (sect. 2.2)

Binary categorization task A categorization task with two classes: |C| = 2.

(sect. 1.1.1)

Bioinformatics An interdisciplinary area at the intersection of biological, computer,

and information sciences necessary to manage, process, and understand large

amounts of biological data.

Child category Category q ∈ C is a child category of class p ∈ C in a class hierarchy

H = 〈C,≤〉, if q < p and 6 ∃r ∈ C : q < r < p. (sect. 1.2.1)

Consistency of evaluation measures There exists no pair of classification results

a, b ∈ Ψ, which the two measure f , g on domain Ψ evaluate differently: f(a) > f(b)

and g(a) < g(b). (sect. 5.4)

Controlled vocabulary An established list of standardized terminology for use in in-

dexing and retrieval of information. A controlled vocabulary ensures that a subject

will be described using the same preferred term each time it is indexed and this

will make it easier to find all information about a specific topic during the search

process [National Library of Canada]. (sect. 2.1)

167

Glossary 168

Degree of consistency of evaluation measures The ratio |R|
|R|+|S| , where R = {(a, b)|

a, b ∈ Ψ, f(a) > f(b), g(a) > g(b)}, S = {(a, b)|a, b ∈ Ψ, f(a) > f(b), g(a) < g(b)}
for two measures f , g on domain Ψ. (sect. 5.4)

Degree of discriminancy of evaluation measures The degree of discriminancy of

measure f over measure g on domain Ψ is the ratio |P |
|Q| , where P = {(a, b)|a, b ∈

Ψ, f(a) > f(b), g(a) = g(b)} and Q = {(a, b)|a, b ∈ Ψ, g(a) > g(b), f(a) = f(b)}.
(sect. 5.4)

Depth of a directed acyclic graph The maximal depth over all vertices in the graph.

(sect. 2.2)

Depth (or level) of a vertex in a DAG The length of the shortest path from the

root to the vertex. (sect. 2.2)

Directed acyclic graph (DAG) A graph where each edge has a direction and there

are no cycles. (sect. 2.2)

Discriminancy of evaluation measures Measure f is more discriminating than mea-

sure g on domain Ψ if there exist a, b ∈ Ψ such that f(a) > f(b) and g(a) = g(b),

and there exist no a, b ∈ Ψ such that g(a) > g(b) and f(a) = f(b). (sect. 5.4)

Distance between categories The length of the shortest (undirected) path from one

category to another in a hierarchical graph. (sect. 3.3)

F-measure Fβ = (β2+1)·P ·R
(β2·P+R)

, β ∈ [0, +∞), where P denotes precision and R denotes

recall. (sect. 3.3)

Finite partially ordered set (poset) A structure H = 〈C,≤〉, where C is a finite

set and ≤ ⊆ C × C is a reflexive, anti-symmetric, transitive binary relation on

C [Joslyn, 2004]. (sect. 1.2.1)

“Flat” learning algorithm A standard, non-hierarchical learning algorithm applied

to the “flat” set of all categories (internal and leaves) from a given class hierarchy.

Gene Ontology An ontology of gene/gene product functionalities developed by the

Gene Ontology Consortium (http://www.geneontology.org). (sect. 7.2.2)

Genomics A new scientific discipline that studies genes and their functions. It is charac-

terized by high-throughput genome-wide experimental approaches combined with

Glossary 169

statistical and computational techniques of bioinformatics for the analysis of the

results.

Graph A pair (V,E), where V is a set of vertices (aka nodes), and E is a set of edges

between the vertices E = {(u, v)|u, v ∈ V }. (sect. 2.2)

Hierarchical consistency Any label set Ci ∈ C assigned to an instance di ∈ D includes

complete ancestor sets for every label ck ∈ Ci, i.e. if ck ∈ Ci and cj ∈ Ancestors(ck),

then cj ∈ Ci. (sect. 2.3)

Hierarchical F-measure The F-measure calculated on the true and predicted category

sets extended with the corresponding ancestor classes. (sect. 5.2)

Hierarchical global feature selection Selection of relevant features for all categories

in a given hierarchy simultaneously. (sect. 3.1)

Hierarchical global learning algorithm A learning algorithm that builds only one

classifier to discriminate all categories in a hierarchy. (sect. 3.2)

Hierarchical local feature selection Selection of relevant features for each subprob-

lem, corresponding to an internal node of a class hierarchy, separately. (sect. 3.1)

Hierarchical local learning algorithm A learning algorithm that builds separate

classifiers for internal nodes of a class hierarchy. (sect. 3.2)

Hierarchical precision Precision calculated on the true and predicted category sets

extended with the corresponding ancestor classes. (sect. 5.2)

Hierarchical recall Recall calculated on the true and predicted category sets extended

with the corresponding ancestor classes. (sect. 5.2)

Hierarchical text categorization task A text categorization task with a given poset

structure H = 〈C,≤〉 on category set C. (sect. 1.2.1)

Hierarchy A set of predefined categories C with a given partially ordered structure on

it H = 〈C,≤〉. (sect. 1.2.1)

Internal (intermediate) category A category that has both parent and children

classes. (sect. 1.2.1)

Leaf category A category that has no children classes. (sect. 1.2.1)

Glossary 170

Length of the path in a directed graph The number of edges traversed in the path.

(sect. 2.2)

Macroaveraging Averaging individual categories’ performances (e.g. precision/recall)

over all categories. (sect. 3.3)

Medical Subject Headings (MeSH) A controlled vocabulary of the National Library

of Medicine (NLM) (http://www.nlm.nih.gov/mesh/meshhome.html). It consists

of specialized terminology used for indexing, cataloging, and searching for biomed-

ical and health-related information and documents. (sect. 7.1.2)

Medline The online public database of biomedical literature at the National Library

of Medicine (NLM) (http://www.ncbi.nih.gov/entrez/query.fcgi), developed by the

National Center for Biotechnology Information (NCBI) at the National Institutes

of Health (NIH).

Microaveraging Summing individual cells in contingency matrices (i.e. TP, FP, FN,

TN) and then calculating the performance measure (e.g. precision/recall) for a

global matrix. (sect. 3.3)

Multi-class categorization task A categorization task with more than two classes:

|C| > 2. (sect. 1.1.1)

Multi-label categorization task A categorization task where each document can be

assigned to any number of categories from 0 to |C|. (sect. 1.1.1)

Offspring set For a category p ∈ C and a class hierarchy H = 〈C,≤〉, Offspring(p) =

{q ∈ C : q ≤ p}. (sect. 1.2.1)

Ontology The hierarchical structuring of knowledge using a set of concepts that are

specified in order to create an agreed-upon vocabulary for exchanging information.

[National Library of Canada] (sect. 2.1)

Out-degree of a vertex The number of edges initiated in the vertex. (sect. 2.2)

Parent category Category p ∈ C is a parent category of class q ∈ C in a class hierarchy

H = 〈C,≤〉, if q < p and 6 ∃r ∈ C : q < r < p. (sect. 1.2.1)

Path in a directed graph A list of vertices of the graph where each vertex has an

edge from it to the next vertex. (sect. 2.2)

Glossary 171

Precision The percentage of correctly classified documents out of all documents classi-

fied to a category. (sect. 3.3)

Recall The percentage of correctly classified documents out of all documents in a cate-

gory. (sect. 3.3)

Root (top) category An ancestor of all classes in the hierarchy: {Root(H)} =
⋂

p∈C Ancestors(p). (sect. 1.2.1)

Single-label categorization task A categorization task where each document must

be assigned to exactly one category. (sect. 1.1.1)

Statistical consistency of evaluation measures The degree of consistency of two

measures is greater than 0.5. (sect. 5.4)

Statistical discriminancy of evaluation measures Measure f is statistically more

discriminating than measure g on domain Ψ, if the degree of discriminancy for f

over g is greater than 1. (sect. 5.4)

Taxonomy A form of hierarchy representing a controlled vocabulary. (sect. 2.1)

Text categorization task The task of assigning a Boolean value to each pair 〈dj, ci〉 ∈
D × C, where D is a domain of documents and C =

{
c1, . . . , c|C|

}
is a set of

predefined categories. [Sebastiani, 2002] (sect. 1.1.1)

Thesaurus An advanced controlled vocabulary that gives not only the relationships

between the terms in the form of a hierarchy (narrower-broader terms), but also

related and preferable terms. (sect. 2.1)

Tree A directed acyclic graph where each vertex (except the root) has exactly one

parent. (sect. 2.2)

Bibliography

[Agrawal et al., 2000] Agrawal, R., Jr., R. B., and Srikant, R. (2000). Athena: Mining-

Based Interactive Management of Text Database. In Proceedings of the International

Conference on Extending Database Technology (EDBT), pages 365–379.

[Andrade and Bork, 2000] Andrade, M. and Bork, P. (2000). Automated Extraction of

Information in Molecular Biology. FEBS Letters, 476:12–17.

[Ashburner et al., 2000] Ashburner, M. et al. (2000). Gene Ontology: Tool for the Uni-

fication of Biology. Nature Genetics, 25(1):25–29.

[Blaschke et al., 1999] Blaschke, C., Andrade, M., Ouzounis, C., and Valencia, A. (1999).

Automatic Extraction of Biological Information from Scientific Text: Protein-Protein

Interactions. In Proceedings of the International Conference on Intelligent Systems for

Molecular Biology (ISMB), pages 60–67.

[Blockeel et al., 2002] Blockeel, H., Bruynooghe, M., Dzeroski, S., Ramon, J., and

Struyf, J. (2002). Hierarchical Multi-Classification. In Proceedings of the SIGKDD

Workshop on Multi-Relational Data Mining (MRDM), pages 21–35.

[Bolshakova et al., 2005] Bolshakova, N., Azuaje, F., and Cunningham, P. (2005).

A Knowledge-Driven Approach to Cluster Validity Assessment. Bioinformatics,

21(10):2546–2547.

[Breiman et al., 1984] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.

(1984). Classification and Regression Trees. Wadsworth, Belmont, Ca.

[Brown et al., 1999] Brown, M., Grundy, W., Lin, D., Christianini, N., Sugnet, C., Jr,

M., and Haussler, D. (1999). Support Vector Machine Classification of Microarray

Gene Expression Data. Technical report, University California Santa Cruz.

172

Bibliography 173

[Bunescu et al., 2003] Bunescu, R. et al. (2003). Learning to Extract Proteins and their

Interactions from MedLine abstracts. In Proceedings of the ICML Workshop on Ma-

chine Learning in Bioinformatics.

[Burhans et al., 2003] Burhans, D., Campbell, A., and Skuse, G. (2003). Exploring the

Role of Knowledge Representation and Reasoning in Biomedical Text Understanding.

In Proceedings of the SIGIR Workshop on Text Analysis and Search for Bioinformatics.

[Burke, 2003] Burke, W. (2003). Genomics as a Probe for Disease Biology. New England

Journal of Medicine, 349(10):969–972.

[Cai and Hofmann, 2004] Cai, L. and Hofmann, T. (2004). Hierarchical Document Cat-

egorization with Support Vector Machines. In Proceedings of the ACM Conference on

Information and Knowledge Management, pages 78–87.

[Caropreso et al., 2001] Caropreso, M., Matwin, S., and Sebastiani, F. (2001). A

Learner-Independent Evaluation of the Usefulness of Statistical Phrases for Automated

Text Categorization. In Chin, A., editor, Text Databases and Document Management:

Theory and Practice, pages 343–354. Idea Group Publishing.

[Catona et al., 2004] Catona, E., Srinivasan, P., and Street, W. N. (2004). Protein An-

notation with GO Codes. In Proceedings of the MEDINFO 2004.

[Chakrabarti et al., 1997] Chakrabarti, S., Dom, B., Agrawal, R., and Raghavan, P.

(1997). Using Taxonomy, Discriminants, and Signatures for Navigating in Text

Databases. In Proceedings of the International Conference on Very Large Data Bases

(VLDB).

[Chen et al., 2002] Chen, C., Chen, M., and Sun, Y. (2002). PVA: A Self-Adaptive

Personal View Agent. Journal of Intelligent Information Systems, 18(2/3):173–194.

[Chen and Dumais, 2000] Chen, H. and Dumais, S. (2000). Bringing Order to the Web:

Automatically Categorizing Search Results. In Proceedings of the Conference on Hu-

man Factors in Computing Systems (CHI), pages 145–152.

[Cheng et al., 2001] Cheng, C., Tang, J., Wai-chee, A., and King, I. (2001). Hierarchical

Classification of Documents with Error Control. In Proceedings of the Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), pages 433–443.

Bibliography 174

[Chiang and Yu, 2004] Chiang, J.-H. and Yu, H.-C. (2004). Extracting Functional An-

notations of Proteins Based on Hybrid Text Mining Approaches. In Proceedings of the

BioCreAtIvE Challenge Evaluation Workshop.

[Chuang et al., 2000] Chuang, W., Tiyyagura, A., Yang, J., and Giuffrida, G. (2000). A

Fast Algorithm for Hierarchical Text Classification. In Proceedings of the International

Conference on Data Warehousing and Knowledge Discovery (DaWaK), pages 409–418.

[Clare, 2003] Clare, A. (2003). Machine Learning and Data Mining for Yeast Functional

Genomics. PhD thesis, University of Wales.

[Collier et al., 2000] Collier, N., Nobata, C., and Tsujii, J. (2000). Extracting the Names

of Genes and Gene Products with a Hidden Markov Model. In Proceedings of the

International Conference on Computational Linguistics (COLING), pages 201–207.

[Consortium, 2002] Consortium, F. (2002). The Flybase Database of the Drosophila

Genome Projects and Community Literature. Nucleic Acids Research, 30:106–108.

[Cooper and Miller, 1998] Cooper, G. and Miller, R. (1998). An Experiment Comparing

Lexical and Statistical Methods for Extracting MeSH Terms from Clinical Free Text.

Journal of the American Medical Association, 5(1):62–75.

[Cooper, 2003] Cooper, J. (2003). An Evaluation of Unnamed Relations Computation

for Discovery of Protein-Protein Interactions. In Proceedings of the SIGIR Workshop

on Text Analysis and Search for Bioinformatics.

[Couto et al., 2005] Couto, F., Silva, M., and Coutinho, P. (2005). Finding Genomic

Ontology Terms in Text using Evidence Content. BMC Bioinformatics, 6 (Supplement

1).

[Crammer and Singer, 2001] Crammer, K. and Singer, Y. (2001). On the Algorithmic

Implementation of Multi-Class Kernel-based Vector Machines. Journal of Machine

Learning Research, 2:265–292.

[Craven and Kumlien, 1999] Craven, M. and Kumlien, J. (1999). Constructing Biological

Knowledge Bases by Extracting Information from Text Sources. In Proceedings of the

International Conference on Intelligent Systems for Molecular Biology (ISMB), pages

77–86.

Bibliography 175

[D’Alessio et al., 2000] D’Alessio, S., Murray, K., R.Schiaffino, and Kershenbaum, A.

(2000). The Effect of Using Hierarchical Classifiers in Text Categorization. In Proceed-

ing of the International Conference Recherche d’Information Assistee par Ordinateur

(RIAO), pages 302–313.

[Davies and Bouldin, 1979] Davies, J. and Bouldin, D. (1979). A Cluster Separation

Measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1:224–

227.

[de Bruijn and Martin, 2002] de Bruijn, B. and Martin, J. (2002). Getting to the (C)ore

of Knowledge: Mining Biomedical Literature. Int. Journal of Medical Informatics,

67:7–18.

[Dekel et al., 2004] Dekel, O., Keshet, J., and Singer, Y. (2004). Large Margin Hierarchi-

cal Classification. In Proceedings of the International Conference on Machine Learning

(ICML), pages 209–216.

[Dempster et al., 1977] Dempster, A., Laird, N., and Rubin, D. (1977). Maximum Like-

lihood from Incomplete Data via the EM. Journal of the Royal Statistical Society,

Series B, 39:1–38.

[Dietterich, 1997] Dietterich, T. (1997). Machine Learning Research: Four Current Di-

rections. AI Magazine, 18(4):97–136.

[Dietterich and Bakiri, 1995] Dietterich, T. and Bakiri, G. (1995). Solving Multiclass

Learning Problems via Error-Correcting Output Codes. Journal of Artificial Intelli-

gence Research, 2:263–286.

[Do and Poulet, 2003] Do, T.-N. and Poulet, F. (2003). Incremental SVM and Visual-

ization Tools for Bio-Medical Data Mining. In Proceedings of the European Workshop

on Data Mining and Text Mining for Bioinformatics, pages 14–19.

[Dobrokhotov et al., 2003] Dobrokhotov, P., Goutte, C., Veuthey, A.-L., and Gaussier,

E. (2003). Combining NLP and Probabilistic Categorization for Document and Term

Selection for Swiss-Prot Medical Annotation. In Proceedings of the International Con-

ference on Intelligent Systems for Molecular Biology (ISMB), pages 91–94.

[Dolinski et al., 2003] Dolinski, K. et al. (2003). Saccharomyces Genome Database.

http://www.yeastgenome.org/.

Bibliography 176

[Domingos, 1999] Domingos, P. (1999). MetaCost: A General Method for Making Classi-

fiers Cost-sensitive. In Proceedings of the Fifth International Conference on Knowledge

Discovery and Data Mining, pages 155–164.

[Dumais and Chen, 2000] Dumais, S. and Chen, H. (2000). Hierarchical Classification of

Web Content. In Proceedings of the ACM International Conference on Research and

Development in Information Retrieval (SIGIR), pages 256–263.

[ECC, 1992] ECC (1992). Enzyme Nomenclature. Academic Press, San Diego, Califor-

nia.

[Ehrler et al., 2005] Ehrler, F., Geissbuhler, A., Jimeno, A., and Ruch, P. (2005). Data-

poor Categorization and Passage Retrieval for Gene Ontology Annotation in Swiss-

Prot. BMC Bioinformatics, 6 (Supplement 1).

[Eisen et al., 1998] Eisen, M., Spellman, P., Brown, P., and Botstein, D. (1998). Cluster

Analysis and Display of Genome-wide Expression Patterns. Proceedings of the National

Academy of Sciences, 95:14863–14868.

[Famili et al., 2004] Famili, A., Liu, G., and Liu, Z. (2004). Evaluation and Optimization

of Clustering in Gene Expression Data Analysis. Bioinformatics, 20(10):1535–1545.

[Freund and Schapire, 1996] Freund, Y. and Schapire, R. (1996). Experiments with a

New Boosting Algorithm. In Proceedings of the 13th International Conference on

Machine Learning, pages 148–156.

[Friedman et al., 2000] Friedman, J., Hastie, T., and Tibshirani, R. (2000). Additive

Logistic Regression: a Statistical View of Boosting. Annals of Statistics, 2:337–407.

[Frommholz, 2001] Frommholz, I. (2001). Categorizing Web Documents in Hierarchi-

cal Catalogues. In Proceedings of the European Colloquium on Information Retrieval

Research.

[Fukuda et al., 1998] Fukuda, K., Tsunoda, T., Tamura, A., and Takagi, T. (1998). To-

ward Information Extraction: Identifying Protein Names from Biological Papers. In

Proceedings of the Pacific Symposium on Biocomputing (PSB), pages 707–718.

[Furey et al., 2000] Furey, T., Duffy, N., Cristianini, N., Bednarski, D., Schummer, M.,

and Haussler, D. (2000). Support Vector Machine Classification and Validation of Can-

Bibliography 177

cer Tissue Samples Using Microarray Expression Data. Bioinformatics, 16(10):906–

914.

[Gaussier et al., 2002] Gaussier, E., Goutte, C., Popat, K., and Chen, F. (2002). A

Hierarchical Model for Clustering and Categorising Documents. In Proceedings of the

European Colloquium in IR Research (ECIR), pages 229–247.

[Ghani, 2000] Ghani, R. (2000). Using Error-Correcting Codes for Text Classification.

In Proceedings of the International Conference on Machine Learning (ICML).

[Gibbons and Roth, 2002] Gibbons, F. and Roth, F. (2002). Judging the Quality of Gene

Expression-Based Clustering Methods Using Gene Annotation. Genome Research,

12:1574–1581.

[Glenisson et al., 2003] Glenisson, P., Mathys, J., and De Moor, B. (2003). Meta-

Clustering of Gene Expression Data and Literature-Extracted Information. ACM

SIGKDD Explorations, Special Issue on Microarray Data Mining, 5(2).

[Golub et al., 1999] Golub, T., Slonim, D., Tamayo, P., Huard, C., Gaasenbeek, M.,

Mesirov, J., Coller, H., Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., and

Lander, E. (1999). Molecular Classification of Cancer: Class Discovery and Class

Prediction by Gene Expression Monitoring. (286):531–537.

[Goutte and Gaussier, 2005] Goutte, C. and Gaussier, E. (2005). A Probabilistic Inter-

pretation of Precision, Recall and F-score, with Implication for Evaluation. In Pro-

ceedings of the 27th European Conference on Information Retrieval, pages 345–359.

[Greiner et al., 1997] Greiner, R., Grove, A., and Schuurmans, D. (1997). On Learning

Hierarchical Classifications.

[Gruber, 1993] Gruber, T. (1993). A Translation Approach to Portable Ontologies.

Knowledge Acquisition, 5(2):199–220.

[Guttmacher and Collins, 2002] Guttmacher, A. and Collins, F. (2002). Genomic

Medicine A Primer. New England Journal of Medicine, 347(19):1512–1521.

[Hanisch et al., 2002] Hanisch, D., Zien, A., Zimmer, R., and Lengauer, T. (2002). Co-

clustering of Biological Networks and Gene Expression Data. Bioinformatics, 18 (Sup-

plement 1):S145–S154.

Bibliography 178

[Hartigan, 1975] Hartigan, J. (1975). Clustering Algorithms. John Wiley & Sons.

[Hersh and Bhupatiraju, 2003] Hersh, W. and Bhupatiraju, R. (2003). Of Mice and Men

(and Rats and Fruit Flies): The TREC Genomics Track. In Proceedings of the SIGIR

Workshop on Text Analysis and Search for Bioinformatics.

[Hersh et al., 2004] Hersh, W., Bhupatiraju, R., Ross, L., Johnson, P., Cohen, A., and

Kraemer, D. (2004). TREC 2004 Genomics Track Overview. In Proceedings of the

TREC 2004 Conference.

[Hersh et al., 1994] Hersh, W., Buckley, C., Leone, T., and Hickman, D. (1994).

OHSUMED: an Interactive Retrieval Evaluation and New Large Text Collection for

Research. In Proceedings of the ACM International Conference on Research and De-

velopment in Information Retrieval (SIGIR), pages 192–201.

[Hersh et al., 2005] Hersh, W., Cohen, A., Yang, J., Bhupatiraju, R., Roberts, P., and

Hearst, M. (2005). TREC 2005 Genomics Track Overview. In Proceedings of the

TREC 2005 Conference.

[Hettich et al., 1998] Hettich, S., Blake, C., and Merz, C. (1998). UCI repository of

machine learning databases.

[Huang and Ling, 2005] Huang, J. and Ling, C. (2005). Using AUC and Accuracy in

Evaluating Learning Algorithms. IEEE Trans. on Data and Knowledge Engineering,

17(3)(3):299–310.

[Hull, 1994] Hull, D. (1994). Improving Text Retrieval for the Routing Problem Using

Latent Semantic Indexing. In Proceedings of the 17th ACM International Conference

on Research and Development in Information Retrieval (SIGIR), pages 282–289.

[Hvidsten et al., 2003] Hvidsten, T., Laegreid, A., and Komorowski, J. (2003). Learning

Rule-based Models of Biological Process from Gene Expression Time Profiles Using

Gene Ontology. Bioinformatics, 19(9):1116–1123.

[ICD-10, 1992] ICD-10 (1992). International Statistical Classification of Diseases and

Related Health Problems. World Health Organization, Geneva, 1989 revision edition.

[Ipeirotis et al., 2001] Ipeirotis, P., Gravano, L., and Sahami, M. (2001). Probe, Count,

and Classify: Categorizing Hidden Web Databases. In Proceedings of the ACM SIG-

MOD Conference.

Bibliography 179

[Itskevitch, 2001] Itskevitch, J. (2001). Automatic Hierarchical Email Classification Us-

ing Association Rules. Master’s thesis, Simon Fraser University.

[Jenssen et al., 2001] Jenssen, T.-K., Laegreid, A., Komorowski, J., and Hovig, E.

(2001). A Literature Network of Human Genes for High-throughput Analysis of Gene

Expression. Nature Genetics, 28:21–28.

[Jiang and Conrath, 1998] Jiang, J. and Conrath, D. (1998). semantic Similarity Based

on Corpus Statistics and Lexical Taxonomy. In Proceedings of International Confer-

ence on Research in Computational Linguistics.

[Joslyn, 2004] Joslyn, C. (2004). Poset Ontologies and Concept Lattices as Semantic

Hierarchies. In Proceedings of the 12th International Conference on Conceptual Struc-

tures (ICCS), pages 287–302.

[Joslyn et al., 2005] Joslyn, C., Cohn, J., Verspoor, K., and Mniszewski, S. (2005). Auto-

matic Ontological Function Annotation: Towards a Common Methodological Frame-

work. In Proceedings of the 8th Annual Bio-Ontologies Meeting held at ISMB-05.

[Karp et al., 1999] Karp, P., Riley, M., Paley, S., Pellegrini-Toole, A., and Krummen-

acker, M. (1999). EcoCyc: Encyclopedia of Escherichia Coli Genes and Metabolism.

Nucleic Acids Research, 27:55–58.

[Kim et al., 2001] Kim, W., Aronson, A., and Wilbur, W. (2001). Automatic MeSH

Term Assignment and Quality Assessment. In Proceedings of the AMIA 2001 Annual

Symposium.

[King et al., 2003] King, O., Foulger, R., Dwight, S., White, J., and Roth, F. (2003).

Predicting Gene Function from Patterns of Annotation. Genome Research, 13:896–

904.

[Kiritchenko et al., 2004] Kiritchenko, S., Matwin, S., and Famili, A. (2004). Hierarchi-

cal Text Categorization as a Tool of Associating Genes with Gene Ontology Codes. In

Proceedings. of the Second European Workshop on Data Mining and Text Mining for

Bioinformatics, pages 26–30.

[Kiritchenko et al., 2005a] Kiritchenko, S., Matwin, S., and Famili, A. (2005a). Func-

tional Annotation of Genes Using Hierarchical Text Categorization. In Proceedings of

the BioLINK SIG: Linking Literature, Information and Knowledge for Biology.

Bibliography 180

[Kiritchenko et al., 2005b] Kiritchenko, S., Matwin, S., Nock, R., and Famili, A. (2005b).

Learning and Evaluation in the Presence of Class Hierarchies: Application to Text

Categorization. Submitted.

[Koller and Sahami, 1997] Koller, D. and Sahami, M. (1997). Hierarchically Classifying

Documents Using Very Few Words. In Proceedings of the International Conference on

Machine Learning (ICML), pages 170–178.

[Krallinger et al., 2005] Krallinger, M., Padron, M., and Valencia, A. (2005). A Sentence

Sliding Window Approach to Extract Protein Annotations from Biomedical Articles.

BMC Bioinformatics, 6 (Supplement 1).

[Krymolowski et al., 2004] Krymolowski, Y., Alex, B., and Leidner, J. (2004). BioCre-

ative Task 2.1: The Edinburgh-Stanford System. In Proceedings of the BioCreAtIvE

Challenge Evaluation Workshop.

[Lang, 1995] Lang, K. (1995). NewsWeeder: Learning to Filter Netnews. In Proceedings

of the International Conference on Machine Learning (ICML), pages 331–339.

[Lewis, 1992] Lewis, D. (1992). An Evaluation of Phrasal and Clustered Representation

on a Text Categorization Task. In Proceedings of the ACM International Conference

on Research and Development in Information Retrieval (SIGIR), pages 37–50.

[Lewis et al., 2004] Lewis, D., Yang, Y., Rose, T., and Li, F. (2004). RCV1: A New

Benchmark Collection for Text Categorization Research. Journal of Machine Learning

Research, 5:361–397.

[Li and Roth, 2002] Li, X. and Roth, D. (2002). Learning Question Classifiers. In Pro-

ceedings of the International Conference on Computational Linguistics (COLING).

[Lin, 1998] Lin, D. (1998). An Information-Theoretic Definition of Similarity. In Pro-

ceedings of the International Conference on Machine Learning (ICML), pages 296–304.

[Lin et al., 2002] Lin, S.-H., Chen, M., Ho, J.-M., and Huang, Y.-M. (2002). ACIRD:

Intelligent Internet Document Organization and Retrieval. Knowledge and Data En-

gineering, 14(3):599–614.

[Liu et al., 2004] Liu, J., Wang, W., and Yang, J. (2004). Gene Ontology Friendly Bi-

clustering of Expression Profiles. In Proceedings of the IEEE Computational Systems

Bioinformatics Conference (CSB).

Bibliography 181

[Long and Vega, 2003] Long, P. and Vega, V. (2003). Boosting and Microarray Data.

Machine Learning Journal, 52(1-2):31–44.

[Lord et al., 2003] Lord, P., Stevens, R., Brass, A., and Goble, C. (2003). Investigating

Semantic Similarity Measures Across the Gene Ontology: the Relationship between

Sequence and Annotation. 19(10):1275–1283.

[Maron, 1961] Maron, M. (1961). Automatic Indexing: an Experimental Inquiry. Jour-

nal of the Association for Computing Machinery, 8(3):404–417.

[Masys et al., 2001] Masys, D., Welsh, J., Fink, J., Gribskov, M., Klacansky, I., and

Corbeil, J. (2001). Use of Keyword Hierarchies to Interpret Gene Expression Patterns.

Bioinformatics, 17(4):319–326.

[McCallum, 1999] McCallum, A. (1999). Multi-label Text Classification with a Mixture

Model Trained by EM. In Proceedings of the AAAI Workshop on Text Learning.

[McCallum et al., 1998] McCallum, A., Rosenfeld, R., Mitchell, T., and Ng, A. (1998).

Improving Text Classification by Shrinkage in a Hierarchy of Classes. In Proceedings

of the International Conference on Machine Learning (ICML), pages 359–367.

[McKusick, 1994] McKusick, V. (1994). Mendelian Inheritance in Man, Catalog of Hu-

man Genes and Genetic Disorders. Johns Hopkins University Press.

[Mewes et al., 1997] Mewes, H., Albermann, K., Bahr, M., Frishman, D., Gleissner, A.,

Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S., Pfeiffer, F., and Zollner, A.

(1997). Overview of the Yeast Genome. Nature, 387:7–8.

[Mitchell, 1998] Mitchell, T. (1998). Conditions for the Equivalence of Hierarchical and

Flat Bayesian Classifiers. Technical report, Center for Automated Learning and Dis-

covery, Carnegie-Mellon University.

[Mladenic and Grobelnik, 1998] Mladenic, D. and Grobelnik, M. (1998). Feature Selec-

tion for Classification Based on Text Hierarchy. In Working notes of Learning from

Text and the Web, Conference on Automated Learning and Discovery (CONALD).

[Nédellec et al., 2001] Nédellec, C., Vetah, M., and Bessières, P. (2001). Sentence Filter-

ing for Information Extraction in Genomics, a Classification Problem. In Proceedings

of the 5th European Conference on Principles and Practice of Knowledge Discovery in

Databases (PKDD), pages 326–337.

Bibliography 182

[Ng et al., 1997] Ng, H., Goh, W., and Low, K. (1997). Feature Selection, Perceptron

Learning, and a Usability Case Study for Text Categorization. In Proceedings of the

ACM International Conference on Research and Development in Information Retrieval

(SIGIR), pages 67–73.

[Nobata et al., 1999] Nobata, C., Collier, N., and Tsujii, J. (1999). Automatic Term

Identification and Classification in Biology Texts. In Proceedings of the Natural Lan-

guage Pacific Rim Symposium (NLPRS), pages 369–374.

[Ogata et al., 1999] Ogata, H., Goto, S., Fujibuchi, W., Bono, H., and Kanehisa, M.

(1999). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research,

27:29–34.

[Ohta et al., 1997] Ohta, Y., Yamamoto, Y., Okazaki, T., Uchiyama, I., and Takagi, T.

(1997). Automatic Construction of Knowledge Base from Biological Papers. In Pro-

ceedings of the International Conference on Intelligent Systems for Molecular Biology

(ISMB), pages 218–225.

[Porter, 1980] Porter, M. (1980). An Algorithm for Suffix Stripping. Program, 14(3):130–

137.

[Pretschner and Gauch, 1999] Pretschner, A. and Gauch, S. (1999). Ontology Based

Personalized Search. In Proceedings of the IEEE International Conference on Tools

with Artificial Intelligence (ICTAI), pages 391–398.

[Proux et al., 1998] Proux, D., Rechenmann, F., Julliard, L., Pillet, V., and Jacq, B.

(1998). Detecting Gene Symbols and Names in Biological Texts: A First Step Toward

Pertinent Information. In Proceedings of the Ninth Workshop on Genome Informatics,

pages 72–80.

[Proux et al., 2000] Proux, D., Rechenmann, F., and Laurent, J. (2000). A Pragmatic

Information Extraction Strategy for Gathering Data on Genetic Interactions. In Pro-

ceedings of the International Conference on Intelligent Systems for Molecular Biology

(ISMB), pages 279–285.

[Quinlan, 1993] Quinlan, J. (1993). C4.5: Programs for Machine Learning. Morgan

Kaufmann.

Bibliography 183

[Ray and Craven, 2005] Ray, S. and Craven, M. (2005). Learning Statistical Models

for Annotating Proteins with Function Information using Biomedical Text. BMC

Bioinformatics, 6 (Supplement 1).

[Raychaudhuri and Altman, 2003] Raychaudhuri, S. and Altman, R. (2003). A

Literature-based Method for Assessing the Functional Coherence of a Gene Group.

Bioinformatics, 19(3):396–401.

[Raychaudhuri et al., 2002] Raychaudhuri, S., Chang, J., Sutphin, P., and Altman, R.

(2002). Associating Genes with Gene Ontology Codes Using a Maximum Entropy

Analysis of Biomedical Literature. Genome Research, 12:203–214.

[Raychaudhuri et al., 2003] Raychaudhuri, S., Schütze, H., and Altman, R. (2003). In-

clusion of Textual Documentation in the Analysis of Multidimensional Data Sets:

Application to Gene Expression Data. Machine Learning, 52:119–145.

[Renner and Aszódi, 2000] Renner, A. and Aszódi, A. (2000). High-throughput Func-

tional Annotation of Novel Gene Products Using Document Clustering. In Proceedings

of the Pacific Symposium on Biocomputing (PSB), pages 54–68.

[Resnik, 1995] Resnik, P. (1995). Using Information Content to Evaluate Semantic Sim-

ilarity in a Texonomy. In Proceedings of the 14th International Joint Conference on

Artificial Intelligence, pages 448–453.

[Resnik and Yarowsky, 1997] Resnik, P. and Yarowsky, D. (1997). A Perspective on

Word Sense Disambiguation Methods and their Evaluation. In Proceedings of the

ACL SIGLEX Workshop on Tagging Text with Lexical Semantics: Why, What, and

How?

[Rice et al., 2005] Rice, S., Nenadic, G., and Stapley, B. (2005). Mining Protein Func-

tion from Text using Term-based Support Vector Machines. BMC Bioinformatics, 6

(Supplement 1).

[Riley, 1998] Riley, M. (1998). Genes and Proteins of Escherichia Coli K-12 (GenPro-

tEC). Nucleic Acids Research, 26:54.

[Rison et al., 2000] Rison, S., Hodgman, T., and Thornton, J. (2000). Comparison of

Functional Annotation Schemes for Genomes. Functional and Integrative Genomics,

1:56–69.

Bibliography 184

[Rousseeuw, 1987] Rousseeuw, P. (1987). Silhouettes: a Graphical Aid to the Interpre-

tation and Validation of Cluster Analysis. Journal of Computational Application in

Mathematics, 20:53–65.

[Ruiz and Srinivasan, 2002] Ruiz, M. and Srinivasan, P. (2002). Hierarchical Text Cat-

egorization Using Neural Networks. Information Retrieval, 5:87–118.

[Schapire et al., 1998] Schapire, R., Freund, Y., Bartlett, P., and Lee, W. (1998). Boost-

ing the Margin: a New Explanation for the Effectiveness of Voting Methods. Annals

of Statistics, 26:1651–1686.

[Schapire and Singer, 1999] Schapire, R. and Singer, Y. (1999). Improved Boosting Al-

gorithms Using Confidence-rated Predictions. Machine Learning, 37:297–336.

[Schapire and Singer, 2000] Schapire, R. and Singer, Y. (2000). BoosTexter: A Boosting-

based System for Text Categorization. Machine Learning, 39(2/3):135–168.

[Sebastiani, 2002] Sebastiani, F. (2002). Machine Learning in Automated Text Catego-

rization. ACM Computing Surveys (CSUR), 34(1):1–47.

[Sehgal et al., 2003] Sehgal, A., Qui, X., and Srinivasan, P. (2003). Mining MEDLINE

Metadata to Explore Genes and their Connections. In Proceedings of the SIGIR Work-

shop on Text Analysis and Search for Bioinformatics.

[Sekimizu et al., 1998] Sekimizu, T., Park, H., and Tsujii, J. (1998). Identifying the

Interaction between Genes and Gene Products Based on Frequently Seen Verbs in

Medline Abstracts. In Proceedings of the Ninth Workshop on Genome Informatics,

pages 62–71.

[Shamir and Sharan, 2002] Shamir, R. and Sharan, R. (2002). Algorithmic Approaches

to Clustering Gene Expression Data. In Jiang, T., Smith, T., Xu, Y., and Zhang, M.,

editors, Current Topics in Computational Biology, pages 269–299. MIT Press.

[Shatkay et al., 2000] Shatkay, H., Edwards, S., Wilbur, W., and Boguski, M. (2000).

Genes, Themes, and Microarrays: Using Information Retrieval for Large-Scale Gene

Analysis. In Proceedings of the International Conference on Intelligent Systems for

Molecular Biology (ISMB).

[Speer et al., 2004a] Speer, N., Spieth, C., and Zell, A. (2004a). A Memetic Clustering

Algorithm for the Functional Partition of Genes Based on the Gene Ontology . In

Bibliography 185

Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics

and Computational Biology (CIBCB), pages 252–259.

[Speer et al., 2004b] Speer, N., Spieth, C., and Zell, A. (2004b). A Memetic Co-

Clustering Algorithm for Gene Expression Profiles and Biological Annotation. In

Proceedings of the 2004 Congress on Evolutionary Computation (CEC), pages 1631–

1638.

[Speer et al., 2005] Speer, N., Spieth, C., and Zell, A. (2005). Biological Cluster Va-

lidity Indices Based on the Gene Ontology. In Proceedings of the 6th International

Symposium on Intelligent Data Analysis (IDA), pages 429–439.

[Srihari et al., 2003] Srihari, R., Ruiz, M., and Srikanth, M. (2003). Concept Chain

Graphs: A Hybrid IR Framework for Biomedical Text Mining. In Proceedings of the

SIGIR Workshop on Text Analysis and Search for Bioinformatics.

[Stapley and Benoit, 2000] Stapley, B. and Benoit, G. (2000). Biobibliometrics: Infor-

mation Retrieval and Visualization from Co-occurrences of Gene Names in Medline

Abstracts. In Proceedings of the Pacific Symposium on Biocomputing (PSB), pages

529–540.

[Stephens et al., 2001] Stephens, M., Palakal, M., Mukhopadhyay, S., Raje, R., and

Mostafa, J. (2001). Detecting Gene Relations from Medline Abstracts. In Proceedings

of the Pacific Symposium on Biocomputing (PSB).

[Stevens et al., 2000] Stevens, R., Goble, C., and Bechhofer, S. (2000). Ontology-based

Knowledge Representation for Bioinformatics. Briefings in Bioinformatics, 1(4):398–

416.

[Sun and Lim, 2001] Sun, A. and Lim, E.-P. (2001). Hierarchical Text Classification

and Evaluation. In Proceedings of the IEEE International Conference on Data Mining

(ICDM), pages 521–528.

[Suzuki et al., 2001] Suzuki, E., Gotoh, M., and Choki, Y. (2001). Bloomy Decision Tree

for Multi-Objective Classification. In Proceedings of the International Conference on

Principles of Data Mining and Knowledge Discovery (PKDD), pages 436–447.

[Swanson, 1986] Swanson, D. (1986). Fish Oil, Raynaud’s Syndrome, and Undiscovered

Public Knowledge. Perspectives in Biology and Medicine, 30:7–18.

Bibliography 186

[Swanson, 1988] Swanson, D. (1988). Migraine and Magnesium: Eleven Neglected Con-

nections. Perspectives in Biology and Medicine, 31:526–557.

[Tamames et al., 1998] Tamames, J., Ouzounis, C., Casari, G., Sander, C., and Valencia,

A. (1998). EUCLID: Automatic Classification of Proteins in Functional Classes by

their Database Annotations. Bioinformatics, 14(6):542–543.

[Thomas et al., 2000] Thomas, J., Milward, D., Ouzounis, C., Pulman, S., and Carroll,

M. (2000). Automatic Extraction of Protein Interactions from Scientific Abstracts. In

Proceedings of the Pacific Symposium on Biocomputing (PSB), pages 541–552.

[Toutanova et al., 2001] Toutanova, K., Chen, F., Popat, K., and Hofmann, T. (2001).

Text Classification in a Hierarchical Mixture Model for Small Training Sets. In Pro-

ceedings of the International Conference on Information and Knowledge Management,

pages 105–113.

[Tsochantaridis et al., 2004] Tsochantaridis, I., Hofmann, T., Joachims, T., and Altun,

Y. (2004). Support Vector Machine Learning for Interdependent and Structured Out-

put Spaces. In Proceedings of the International Conference on Machine Learning

(ICML).

[van Rijsbergen, 1979] van Rijsbergen, C. (1979). Information Retrieval. Butterworths,

second edition.

[Verspoor et al., 2005] Verspoor, K., Cohn, J., Joslyn, C., Mniszewski, S., Rechtsteiner,

A., Rocha, L., and Simas, T. (2005). Protein Annotation as Term Categorization in the

Gene Ontology using Word Proximity Networks. BMC Bioinformatics, 6 (Supplement

1).

[Wang et al., 2004] Wang, H., Azuaje, F., Bodenreider, O., and Dopazo, J. (2004). Gene

Expression Correlation and Gene Ontology-Based Similarity: an Assessment of Quan-

titative Relationships. In Proceedings of the IEEE 2004 Symposium on Computational

Intelligence in Bioinformatics and Computational Biology, pages 25–31.

[Wang et al., 2001] Wang, K., Zhou, S., and He, Y. (2001). Hierarchical Classification of

Real Life Documents. In Proceedings of the SIAM International Conference on Data

Mining.

Bibliography 187

[Wang et al., 1999] Wang, K., Zhou, S., and Liew, S. (1999). Building Hierarchical

Classifiers Using Class Proximities. In Proceedings of the International Conference on

Very Large Data Bases (VLDB), pages 363–374.

[Weigend et al., 1999] Weigend, A., Wiener, E., and Pedersen, J. (1999). Exploiting

Hierarchy in Text Categorization. Information Retrieval, 1(3):193–216.

[Wibowo and Williams, 1999] Wibowo, W. and Williams, H. (1999). On Using Hierar-

chies for Document Classification. In Proceedings of the Australian Document Com-

puting Conference, pages 31–37.

[Wibowo and Williams, 2002a] Wibowo, W. and Williams, H. (2002a). Simple and Ac-

curate Feature Selection for Hierarchical Categorisation. In Proceedings of the ACM

Symposium on Document Engineering, pages 111–118.

[Wibowo and Williams, 2002b] Wibowo, W. and Williams, H. (2002b). Strategies for

Minimising Errors in Hierarchical Web Categorisation. In Proceedings of the Interna-

tional Conference on Information and Knowledge Management (CIKM), pages 525–

531.

[Wiener et al., 1995] Wiener, E., Pedersen, J., and Weigend, A. (1995). A Neural Net-

work Approach to Topic Spotting. In Proceedings of the Annual Symposium on Doc-

ument Analysis and Information Retrieval (SDAIR), pages 317–332.

[Wooster and Weber, 2003] Wooster, R. and Weber, B. (2003). Breast and Ovarian

Cancer. New England Journal of Medicine, 348(23):2339–2347.

[Yandell and Majoros, 2002] Yandell, M. and Majoros, W. (2002). Genomics and Natu-

ral Language Processing. Nature Reviews Genetics, 3:601–610.

[Yeh et al., 2003] Yeh, A., Hirschman, L., and Morgan, A. (2003). Evaluation of Text

Data Mining for Database Curation: Lessons Learned from the KDD Challenge Cup.

In Proceedings of the International Conference on Intelligent Systems for Molecular

Biology (ISMB), pages 331–339.

[Zhdanova and Shishkin, 2002] Zhdanova, A. and Shishkin, D. (2002). Classification of

Email Queries by Topic: Approach Based on Hierarchically Structured Subject Do-

main. In Proceedings of the International Conference on Intelligent Data Engineering

and Automated Learning, pages 99–104.

