
Email Classification with Co-Training

Svetlana Kiritchenko and Stan Matwin

School of Information Technology and Engineering
University of Ottawa
Ottawa, ON, Canada

{svkir,stan}@site.uottawa.ca

Abstract

The main problems in text classification are
lack of labeled data, as well as the cost of la-
beling the unlabeled data. We address these
problems by exploring co-training - an algo-
rithm that uses unlabeled data along with a
few labeled examples to boost the performance
of a classifier. We experiment with co-training
on the email domain. Our results show that
the performance of co-training depends on the
learning algorithm it uses. In particular, Sup-
port Vector Machines significantly outperforms
Naive Bayes on email classification.

1 Introduction

You have just returned from a relaxing two-
week vacation. There has been no phone, no
email for two wonderful weeks, and now you
are back. You open your inbox and ... Wow!
There are 347 new messages! How could you
manage to read all of them? Probably, you
will spend the whole day trying to sort out all
this mail. Having done this burdensome work,
you feel like you need a vacation again. What
is worse is that most of those messages are out
of your interest or out of date.

Nowadays, a typical user receives about 40-
50 email messages every day. For some people
hundreds of messages are usual. Thus, users
spend a significant part of their working time

on processing email. As the popularity of this
mean of communication is growing, the time
spent on reading and answering emails will only
increase. At the same time, a large part of
email traffic consists of non-personal, non time-
critical information that should be filtered. As
a result, there has recently been a growing in-
terest in creating automatic systems to help
users managing an extensive email flow. Exam-
ples of such systems are PEA[19], MailCat[16],
Re:Agent[2] and others.

Generally, the main tool for email manage-
ment is text classification[15, 4, 3]. A classifier
is a system that automatically classifies texts
into one (or more) of a discrete set of predefined
categories. For example, for email management
one could benefit from a system that classifies
incoming messages as junk and non-junk or as
important and unimportant.

Most text classification approaches use su-
pervised learning for building a classification
system. In a supervised learning setting, we are
given examples that belong to a two-class con-
cept (e.g. interesting and uninteresting email).
All examples are labeled with respect to their
membership in one of the two classes. A ma-
chine learning system induces, from these ex-
amples (referred to as a training set), a general
description of both classes. It is important that
such a description has predictive power, i.e. it
predicts with high degree of success the class
of unseen examples. In our example, we want

1



a machine learning system to come up with a
definition of what makes an interesting email
message, so that this definition will successfully
pick interesting email from the user’s inbox in
the future (e.g. it will work well on examples
different from the ones in the training set).

It is well-known, both theoretically[17] and
practically[4, 9], that more training data we
have, the more accurate classification system
we get. In general, we need hundreds or even
thousands of labeled examples to produce a
reasonably accurate classifier. For example, re-
cently Microsoft has released the product Out-
look Mobile Manager that can prioritize users’
incoming messages and send the most impor-
tant ones (along with other information like
current tasks, reminders and so on) to their
mobile devices. Microsoft claims that the sys-
tem would work its best after getting about 600
labeled examples. For an average user it would
require several weeks for the system to start
working in full. Moreover, during these weeks
the user would be constantly bothered to label
each incoming message as important or not.

One way to overcome the problem of labo-
rious hand-labeling is to look at the user’s be-
havior to determine if a message is important
or not. For example, if a message has been
printed, it is probably an important one. On
the other hand, deleting a message without
reading could be the indication of junk. But
this kind of monitoring is not very reliable and
also requires some time to gather information
before the system is able to learn the general-
ization.

Another way to deal with the problem of la-
beling data is putting in use unlabeled data
that we usually have plenty of. There have been
proposed some learning algorithms that are de-
signed for the extensive use of unlabeled data.
In this paper we will concentrate on one such al-
gorithm called Co-Training[1]. This algorithm
allows one to start with just a few labeled ex-
amples to produce an initial weak classifier and
then use only unlabeled data to improve the
performance. It is based on the idea that some-
times features that describe the data are redun-
dant and could be split into two sets each of
which on its own is sufficient for correct clas-
sification. Then we can build two classifiers,
one for each set. We use these two classifiers

to go through unlabeled examples, label them,
and add the most confident predictions to the
labeled set. In other words, the classifiers train
each other using the unlabeled data1. Craven
et al. employed co-training in their large re-
search project on extracting knowledge from
the World Wide Web[5]. The results were very
encouraging; they were able to reduce the clas-
sification error by better than a factor of two
using only unlabeled data.

The goal of this research is exploring the pos-
sibility of applying co-training to email classifi-
cation. Usually, in email classification (as well
as in text classification in general) texts are rep-
resented as bags of the words which appear in
a whole message, i.e. in the header and in the
body of a message. But often the information
in a header and in a body is similar. In other
words, only one of the sources, either a header
or a body, is sufficient for correct classification.
In [3], the authors empirically show that us-
ing only headers just slightly reduces the accu-
racy of classification. Therefore, we split the
bags of words that represent email messages
into two sets: the words from headers2 and
the words from bodies. We then proceed with
the co-training algorithm as described in [1].
Our results show that the performance of co-
training depends on the learning algorithm it
uses. In particular, Naive Bayes[11] could not
benefit from co-training on our data whereas
Support Vector Machines(SVM)[18] has been
applied successfully. The possible explanation
to this phenomenon is the sparseness of feature
vectors that SVM could deal with efficiently
and that is crucial for Naive Bayes.

The contribution of this work is two-fold:
firstly, we show in detail how to apply co-
training on text-mining tasks. Secondly, we
demonstrate that SVM is the learner of choice
in these applications of co-training.

In the remainder of this paper, we first give a
short survey of related work, then describe the
co-training algorithm in detail. After that, we
present our results of applying the algorithm to

1It is interesting to observe that such a learning set-
ting involving two (or more) agents reflects the social
character of the learning process, unlike the standard
Machine Learning approach that focuses on an isolated,
single learner.

2In this study we use only a subject instead of a
whole header for reasons mentioned in Section 4.

2



email classification. Finally, we give our con-
clusions and discuss the prospects for future
work.

2 Related Work

After appearing of the original work [1], a num-
ber of studies emerge to explore the potentials
of the co-training idea. For example, in [14] co-
training has been successfully applied to one of
the natural language processing tasks, namely
base noun phrase bracketing, which usually re-
quires a large amount of training data. In this
work the authors also showed that a signifi-
cant improvement in accuracy can be achieved
by combining co-training and active learning in
the form of using humans to correct inaccurate
labels made by co-training.

Another variant of combining co-training
and active learning has been proposed in [12].
Co-Test(Co-EM) extends co-training in that it
asks to explicitly label examples on which the
two classifiers of co-training have different opin-
ions.

Nigam and Ghani[13] performed exten-
sive experiments comparing the performance
of co-training and another popular algo-
rithm that uses unlabeled data: Expectation-
Maximization(EM)[6]. These experiments
show that co-training outperforms EM even on
tasks where there is no natural split of features.

Transductive Sup-
port Vector Machines(TSVM) proposed in [9]
is another semi-supervised learner that to some
extent subsumes co-training[10]. It uses la-
beled and unlabeled data to find the maximum
margin hyper-plane dividing the positive and
negative instances. It is particularly beneficial
in the situations where we do not care about
good generalization, but rather good classifica-
tion accuracy on a particular test set.

In addition, [21] has presented a method of
using a large amount of unlabeled information
available on the World Wide Web to improve
the classification of short text strings.

3 Co-Training Algorithm

In this section we give a detailed description of
the co-training algorithm adopted from [1].

Sometimes features describing the data are
redundant for a given task, so that we can clas-
sify an example having only one set of features
or another. Such sets of features are called
”redundantly sufficient”. For example, emails
can be classified using only one of the two sets
of features: header information (for example,
subjects) or the words in the bodies of mes-
sages. We often can say what a message is
about looking at the message itself or looking
only at the subject. We split features into two
sets and train two independent classifiers, one
for each set of features. We train them provid-
ing some minimal number of labeled examples
that we have and get two weak classifiers that
are, hopefully, better then random. Then, we
use unlabeled data in a loop for some number
of iterations or as long as we have data. In
real settings, one can find the optimal number
of iterations testing the performance on each
iteration on a separate validation set. In the
loop, both classifiers examine new examples,
label them, and add the most confidently pre-
dicted positive and negative examples to the
set of labeled examples. Thus, the classifiers
train each other using only unlabeled data.

The whole algorithm is as follows:

Given:

• F1 and F2 are redundantly sufficient sets
of features

• L is a set of labeled training examples
• U is a set of unlabeled examples

Loop:

• Learn the first classifier C1 from L based
on F1

• Learn the second classifier C2 from L
based on F2

• For each classifier Ci do:

– Ci labels examples from U based on
Fi

– Ci chooses p positive and n negative
the most confidently predicted exam-
ples E from U

– Ci removes examples E from U

– Ci adds examples E with the corre-
sponding labels to L

3



Why should this work? The intuition is that
if one classifier can find an example that is
very similar to some of labeled ones, then it
can confidently predict the class of this exam-
ple and provide one more training example for
the other classifier. But, of course, if this ex-
ample happened to be easy to classify for the
first classifier, it does not mean that this ex-
ample will be easy to classify for the second
classifier, so the second classifier will get use-
ful information to improve itself and vice versa.
For example, if we have two messages, one with
subject ”Company meeting today at 3 pm” and
the other one with subject ”Meeting today at
5 pm?”, and we know that the first message is
classified as ”meeting”, then we are very con-
fident that the second message should be clas-
sified as ”meeting” as well based only on its
subject. But the messages are likely to have
different content, especially, if they are from
different people. Therefore, the classifier that
is based on the words in the body of a message
will be provided with a whole bunch of new
words that are relevant to class ”meeting”.

Blum and Mitchell ran some experiments to
see if co-training really worked. They consid-
ered the problem of classifying universities’ web
pages as home pages of academic courses. The
two sets of features were the words on pages
themselves and the words on the hyperlinks
that point to the page. The underlying learning
scheme for co-training was Naive Bayes. They
provided just 12 labeled examples (3 positive
and 9 negative) and approximately 800 unla-
beled ones. On each iteration of co-training,
each classifier was allowed to add 1 new posi-
tive and 3 new negative examples to the pool of
labeled examples. After 30 iterations of the co-
training algorithm, the accuracy of the classi-
fier increased reducing the error by better than
a factor of two.

In [1] the authors also provided some theoret-
ical insight into the co-training method. They
proved that if the feature sets representing the
data are conditionally independent given the
class and the target classification function is
learnable3, then any initial weak classifier can

3We use ”learnable” in terms of the general learn-
ability model (PAC model) that assumes that the more
examples are in the training set, the better the accuracy
on the testing set is, provided that the distribution of

be boosted to arbitrarily high accuracy using
unlabeled examples only.

4 Co-Training on Email
Classification

Inspired by the success of Blum and Mitchell’s
experiments with co-training on web page clas-
sification, we have applied this algorithm to
email classification. We took 3 largest folders
from one of the authors’ inbox and formed 3
classification problems. For each problem one
of the folders was considered to consist of in-
teresting messages and others represented un-
interesting email.

The only condition we have in the co-training
settings is the presence of redundantly suffi-
cient features that describe the data. Obvi-
ously, we could divide any email into two parts:
a header and a body. In our experiments we
used only a subject line instead of the whole
header of a message because our 3 folders were
formed mostly by the recipient’s address, so
the data are easily classified using only this
information. Thus, our two sets of features
are the words from the subject lines and the
words from the bodies of email messages. For
co-training to work these two sets of features
have to be conditionally independent given the
class. Generally, this condition is not always
true for email domain. People often repeat the
words from the subject in the body of a mes-
sage. This violation is even stronger than it
is in the web classification task because a sub-
ject and a body are written by the same person
while a web page and hyperlinks pointed to it
are usually created by different people.

For our experiments we had 1500 emails
grouped into three folders with 250, 500, and
750 messages respectively. As was mentioned
above, from these three groups we formed three
2-class problems (with positive and negative
classes) by making positive examples from one
group and negative from other two groups.
Therefore, we had three classification problems
with the distribution of positive and negative
examples as 1:5 (highly imbalanced problem),
1:2 (moderately imbalanced problem), and 1:1

examples in both sets is the same[17]

4



(balanced problem). The bigger imbalance in
data, the worse learning results one might ex-
pect. It is due to the fact that most learn-
ing algorithms try to maximize the accuracy of
predictions, which could be the highest for the
trivial classifier that labels all examples with
the majority class.

For each task 25% of the examples were left
as a test set. From the remaining examples we
randomly picked up p0 positive and n0 negative
examples to form a training set (15 positive and
75 negative for the highly imbalanced problem,
5 positive and 10 negative for the moderately
imbalanced problem, 3 positive and 3 negative
for the balanced problem). Others were con-
sidered unlabeled.

The words from subjects and bodies were
preprocessed; stop words were removed4, the
words that appear only in one message were
removed, the remaining words were stemmed5.
These preprocessed words form the feature sets.
For each feature/word we count the number of
times the word appears in the text to get the
feature value.

In the experiments we ran 50 co-training it-
erations adding on each iteration one positive
and five, two, or one negative examples for the
highly imbalanced problem, the moderately im-
balanced problem, and the balanced problem
respectively (to maintain the initial distribu-
tion of positive and negative examples)6. Each
experiment was conducted 10 times with dif-
ferent training/test splits. Each run started
with at least default accuracy, which is 83.33%
for the highly imbalanced problem, 66.67% for
the moderately imbalanced problem, and 50%
for the balanced problem. The results pre-
sented in tables are the averages of 10 runs.
We used the implementations of learning algo-
rithms Naive Bayes and Support Vector Ma-
chines from WEKA[20].

To get an upper bound for these experiments
4Stop words are very frequent English words

like pronouns, prepositions, etc. Lists of stop
words are generally available (see, for example,
http://www.superjournal.ac.uk/sj/application/demo/
stopword.htm).

5Stemming is the process of removing suffixes and
endings of words.

6We varied parameters of co-training such as the
number of training examples and the number of exam-
ples added on each iteration but it does not influence
the results significantly.

we trained Naive Bayes on a labeled version of
the unlabeled data (see Table 1). As you can
see from these results, the highly imbalanced
problem appeared to be very hard for Naive
Bayes as it cannot achieve on average the de-
fault accuracy (83.33%) even with all available
labeled data.

Table 2 and Figure 1 show the results for
the co-training experiment when the internal
learning algorithm is Naive Bayes. The values
in the table represent the absolute difference
between the initial accuracy (the accuracy of
a weak initial classifier trained on p0 positive
and n0 negative examples) and the accuracy
of the classifier that we get after 50 co-training
iterations. The second column shows the differ-
ences for the subject-based classifier, the third
column is for the body-based classifier, and the
forth column is for the combined classifier. The
combined classifier is obtained by picking the
most confident predictions from the outcomes
of the subject-based and the body-based clas-
sifiers. Almost all numbers in Table 2 are neg-
ative. It means that accuracy on average goes
down, and co-training works in the opposite di-
rection degrading the performance of the initial
classifier. From the Figure 1 we can see that for
the highly imbalanced problem adding new self-
labeled examples hurts the performance badly
on each iteration causing the learning curve go
down quite rapidly. For the other two tasks we
see a little increase (3-5%) in performance for
the first 5-20 iterations, and then the learning
curve goes down even below the initial accura-
cies.

One of the baselines for this experiment
could be the co-training-like algorithm with
random labeling. It differs from co-training
only in that it adds not the most confident
predictions but examples with random labels.
This baseline is about −13% for the combined
classifier for each task. So, co-training with
Naive Bayes does better than this baseline
for two out of three tasks. Another baseline
could be the Expectation-Maximization (EM)
algorithm[6] run on whole messages. Compar-
ing with EM we could see whether co-training
really benefits from having two redundantly
sufficient sets of features in the email domain.
The results for EM are shown in Table 3. Co-
training does worse than EM on two out of

5



Figure 1: Co-Training with Naive Bayes

three tasks.
Why does Naive Bayes work so badly on our

tasks? One of the possible reasons could be
the violation of the conditional independence
of the feature sets. To check if it is the real
cause of such behavior, we removed the words
that appear in the subject from the body of the
messages and ran the experiment again. The
results did not change much.

The other possible reason is that subjects
and bodies are not redundant and needed to
be used together for correct classification. For
example, some users start their messages in a
subject line and continue in the body or even
leave the body empty if the message is short.
Another example is that sometimes for quick
access to the target email address people gen-
erate a new message as a reply for a previous
message, change the body, but forget to change
the subject. In that case the subject and the
body could correspond to completely different
topics.

The third possible reason is the great sparse-
ness among the feature values. Most of the val-
ues are zeros because people tend to use very
different words. To avoid zero probabilities we

apply Laplace smoothing. However, the num-
ber of features is quite big. Naive Bayes may be
quite sensitive to the number of features partly
because of the violation of the independence
assumption. Therefore, we tried to decrease
the number of features by selecting a few the
most important ones 7. The results are pre-
sented in Table 4. We could see that with fea-
ture selection Naive Bayes works a lot better,
and it benefits from co-training in two out of
three tasks. The first task is the hardest be-
cause of the skewed distribution of examples
but even this task looks better with feature se-
lection (−2% compared with −20%).

The empirical test showed that the sparse-
ness of the feature values is one of the reasons
why co-training does not work with plain Naive
Bayes. To confirm this and also to check if co-
training can be applied in general to email clas-
sification, we changed the internal learning al-
gorithm. Instead of Naive Bayes we have used
Support Vector Machines (SVM)[18]. One of
the characteristics of SVM important for us is
that it works well even with very large feature

7We used correlation-based feature subset selection
from WEKA[7].

6



Naive Bayes SVM
highly imbalanced problem(1:5) 80.36% 90.06%

moderately imbalanced problem(1:2) 83.98% 94.85%
balanced problem 91.51% 94.01%

Table 1: Naive Bayes and SVM trained on all available data

Absolute difference in accuracy
between the 1st and the 50th iterations

Subject-based Body-based Combined
classifier classifier classifier

highly imbalanced problem(1:5) -17.11% -19.78% -19.64%
moderately imbalanced problem(1:2) -9.41% -1.20% -1.23%

balanced problem 0.78% -0.53% -0.64%

Table 2: Co-Training with Naive Bayes

Absolute difference in accuracy
between the 1st and the 50th iterations

highly imbalanced problem(1:5) -6.64%
moderately imbalanced problem(1:2) -1.71%

balanced problem 2.86%

Table 3: EM on whole messages

Absolute difference in accuracy
between the 1st and the 50th iterations

Subject-based Body-based Combined
classifier classifier classifier

highly imbalanced problem(1:5) -1.09% -1.82% -1.96%
moderately imbalanced problem(1:2) 1.62% 4.31% 3.89%

balanced problem 1.54% 6.78% 3.81%

Table 4: Co-Training with Naive Bayes and feature selection

Absolute difference in accuracy
between the 1st and the 50th iterations

Subject-based Body-based Combined
classifier classifier classifier

highly imbalanced problem(1:5) 0.28% 1.80% 1.80%
moderately imbalanced problem(1:2) 14.89% 22.47% 17.42%

balanced problem 12.36% 15.84% 18.15%

Table 5: Co-Training with SVM

7



Figure 2: Co-Training with SVM

sets. Therefore, SVM is well-suited for text
classification[8].

First, we tested SVM on a labeled version
of the unlabeled data (see Table 1). In com-
parison with Naive Bayes, SVM did a lot better
giving the evidence that this learning algorithm
is a better choice for text classification (at least
for our tasks).

Table 5 and Figure 2 present the results of co-
training with SVM. All numbers there are pos-
itive, so even for the hardest task co-training
with SVM improves the initial classifier. The
learning curve for the highly imbalanced prob-
lem has a small but positive angle of slope. For
the other two tasks, the curves go up quite
sharply the first 10 iterations, and then their
slopes become lower-grade. These results give
us the evidence that co-training could be ap-
plied to email classification, and it could make
the gain of up to 20% for some tasks.

5 Conclusion

In this research, we have presented a learning
technique introduced in [1] which greatly de-
creases the effort needed in applying machine

learning on real-life data. We have empirically
proved that co-training can be applied to email
classification. At the same time, we showed
that the performance of co-training depends on
the learning method it uses. Namely, Naive
Bayes performed very poorly in our experi-
ments while Support Vector Machines worked
very well.

Though, more research is needed to clarify
the causes of the poor behavior of Naive Bayes
in combination with co-training and explore
other possibilities (along with feature selection)
to improve the performance of Naive Bayes in
the co-training loop. For example, smoothing
the probability distribution of Naive Bayes pre-
dictions could be helpful.

Another direction in this research is apply-
ing co-training to other domains. We plan to
use the algorithm on grain classification. The
task is to classify types of grains to predict the
amount of harvest (big, medium, small) they
could give. We have two different sources of in-
formation about the grains: their physical char-
acteristics and their characteristics in infrared
that could be transferred into two redundantly
sufficient feature sets.

8



Also, a thorough comparative study of co-
training and other learning methods that em-
ploy unlabeled data would be beneficial for the
Machine Learning community.

Acknowledgements

This work has been supported by Commu-
nications and Information Technology On-
tario (CITO) and AmikaNow! Corpora-
tion(www.amikanow.com).

About the Authors

Svetlana Kiritchenko is a graduate student
in Computer Science at the University of Ot-
tawa (Canada). She has a M.Sc. from Moscow
State University (Russia) with major in Artifi-
cial Intelligence. Her research interests are in
text classification and data mining.

Stan Matwin is a professor of Information
Technology and Engineering and the director
of the Graduate Certificate on Electronic Com-
merce program at the University of Ottawa. As
well, he is the former head of the Canadian So-
ciety for Computational Studies of Intelligence,
and IFIP WG 12.2 (Machine Learning).

Dr. Matwin’s research interests are in data
and text mining and knowledge-based systems.
He has authored and co-authored some 100 re-
search papers in refereed conferences and jour-
nals and is particularly interested in applied re-
search which tackles practical problems in need
of a solution.

References

[1] Avrim Blum and Tom Mitchell. Combin-
ing Labeled and Unlabeled Data with Co-
Training. In Proc. of the 11th Annual Con-
ference on Computational Learning The-
ory, pages 92–100, 1998.

[2] Gary Boone. Concept Features in
Re:Agent, an Intelligent Email Agent. In
Proc. of the the 2nd International Confer-
ence on Autonomous Agents, pages 141–
148, St. Paul, MN, USA, 1998.

[3] Jake D. Brutlag and Christopher Meek.
Challenges of the Email Domain for Text
Classification. In Proc. of the 17th Inter-
national Conference on Machine Learning,
pages 103–110, Stanford University, USA,
2000.

[4] William W. Cohen. Learning Rules that
Classify Email. In Proc. of the AAAI
Spring Simposium on Machine Learning in
Information Access, 1996.

[5] M. Craven, D. DiPasquo, D. Freitag,
A. McCallum, T. Mitchell, K. Nigam, and
S. Slattery. Learning to Construct Knowl-
edge Bases from the World Wide Web. Ar-
tificial Intelligence, (118):69–113, 2000.

[6] A. P. Dempster, N. M. Laird, and D. B.
Rubin. Maximum Likelihood from Incom-
plete Data via the EM Algorithm. Journal
of the Royal Statistical Society, Series B,
39(1):1–38, 1977.

[7] M. A. Hall. Correlation-based Feature Sub-
set Selection for Machine Learning. PhD
thesis, University of Waikato, 1998.

[8] Thorsten Joachims. Text Categorization
with Support Vector Machines: Learning
with Many Relevant Features. In Proc. of
the 10th European Conference on Machine
Learning, pages 137–142, Chemnitz, Ger-
many, 1998.

[9] Thorsten Joachims. Transductive Infer-
ence for Text Classification using Support
Vector Machines. In Proc. of the 16th In-
ternational Conference on Machine Learn-
ing, pages 200–209, San Francisco, USA,
1999.

[10] Thorsten Joachims. The Maximum Mar-
gin Approach to Learning Text Classifiers:
Methods, Theory, and Algorithms. PhD
thesis, Universität Dortmund, 2000.

[11] George H. John and Pat Langley. Estimat-
ing Continuous Distributions in Bayesian
Classifiers. In Proc. of the 11th Confer-
ence on Uncertainty in Artificial Intelli-
gence, pages 338–345, Montreal, Quebec,
Canada, 1995. Morgan Kaufmann.

9



[12] Ion Muslea, Steven Minton, and Craig A.
Knoblock. Selective Sampling + Semi-
Supervised Learning = Robust Multi-
View Learning. In IJCAI-2001 Work-
shop ”Text Learning: Beyond Supervi-
sion”, 2001.

[13] Kamal Nigam and Rayid Ghani. Analyz-
ing the Effectiveness and Applicability of
Co-training. In Proc. of the 9th Interna-
tional Conference on Information Knowl-
edge Management, pages 86–93, McLean,
VA , USA, 2000.

[14] David Pierce and Claire Cardie. Limi-
tations of Co-Training for Natural Lan-
guage Learning from Large Datasets. In
Proc. of the 2001 Conference on Empirical
Methods in Natural Language Processing,
CMU, Pittsburgh, PA, USA, 2001.

[15] M. Sahami, S. Dumais, D. Heckerman,
and E. Horvitz. A Bayesian Approach to
Filtering Junk E-mail. In AAAI-98 Work-
shop on Learning for Text Categorization,
Madison, Wisconsin, USA, 1998.

[16] Richard B. Segal and Jeffrey O. Kephart.
MailCat: An Intelligent Assistant for Or-
ganizing E-Mail. In Proc. of the Sixteenth
National Conference on Artificial Intelli-
gence, pages 925–926, Orlando, Florida,
USA, 1999.

[17] L. Valiant. A Theory of the Learn-
able. Communications of the ACM,
27(11):1134–1142, 1984.

[18] Vladimir N. Vapnik. The Nature of Sta-
tistical Learning Theory. Springer, New
York, 1995.

[19] Werner Winiwarter. PEA - a Personal
Email Assistant with Evolutionary Adap-
tation. International Journal of Informa-
tion Technology, 5(1), 1999.

[20] Ian H. Witten and Eibe Frank. Data
Mining: Practical Machine Learning
Tools and Techniques with Java Imple-
mentations. Morgan Kaufmann, 1999.
http://www.cs.waikato.ac.nz/ ml/weka/.

[21] Sarah Zelikovitz and Haym Hirsh. Improv-
ing Short-Text Classification using Unla-
beled Background Knowledge to Assess
Document Similarity. In Proc. of the
17th International Conference on Machine
Learning, Stanford University, USA, 2000.

10


